Advertisement

Siberian Mathematical Journal

, Volume 36, Issue 2, pp 246–264 | Cite as

Weighted Sobolev spaces and boundary behavior of solutions to degenerate hypoelliptic equations

  • S. K. Vodop'yanov
Article

Keywords

Sobolev Space Boundary Behavior Weight Sobolev Space Hypoelliptic Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. K. Vodop'yanov, “Intrinsic geometries and boundary values of differentiable functions. I,” Sibirsk. Mat. Zh.,30, No. 2, 29–42 (1989).Google Scholar
  2. 2.
    G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, Princeton (1982) (Math. Notes,28).Google Scholar
  3. 3.
    L. Hörmander, “Hypoelliptic second order differential equations,” Acta Math.,119, 141–171 (1967).Google Scholar
  4. 4.
    A. Nagel, E. M. Stein, and S. Wainger, “Balls and metrics defined by vector fields. I: Basic properties,” Acta Math.,155, No. 1–2, 103–147 (1985).Google Scholar
  5. 5.
    V. G. Maz'ya, “On continuity at a boundary point of solutions to quasilinear elliptic equations,” Vestnik Leningrad Univ. Mat.,25, 42–55 (1970).Google Scholar
  6. 6.
    E. B. Fabes, D. S. Jerison, and C. E. Kenig, “The Wiener test for degenerate elliptic equations,” Ann. Inst. Fourier (Grenoble),32, No. 3, 151–182 (1982).Google Scholar
  7. 7.
    J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Clarendon Press, Oxford-New York-Tokyo (1993).Google Scholar
  8. 8.
    L. Capogna, D. Danielli, and N. Garofalo, “Embedding theorems and Harnack inequality for solutions of nonlinear subelliptic equations,” C. R. Acad. Sci. Paris. Sér. I Math.,316, 809–814 (1993).Google Scholar
  9. 9.
    B. Franchi, S. Gallot, and R. Wheeden, “Inéqalités isopérimetriques pour des métriques dégénerees,” C. R. Acad. Sci. Paris. Sér. I Math.,317, 651–654 (1993).Google Scholar
  10. 10.
    D. J. Jerison, “The Poincaré inequality for vector fields satisfying Hörmander's condition,” Duke. Math. J.,53, No. 2, 503–523 (1986).Google Scholar
  11. 11.
    G. Lu, “Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications,” Rev. Mat. Iberoamericana,8, No. 3, 367–439 (1992).Google Scholar
  12. 12.
    A. Korányi and H. M. Reimann, Foundations for the Theory of Quasiconformal Mappings on the Heisenberg Group [Preprint], Inst. Math., Bern (1991).Google Scholar
  13. 13.
    S. K. Vodop'yanov and V. M. Chernikov, “Sobolev spaces and hypoelliptic equations,” in: Trudy Inst. Mat. (Novosibirsk). Vol. 29, Novosibirsk, 1995, pp. 3–64.Google Scholar
  14. 14.
    S. K. Vodop'yanov, “L p-potential theory and quasiconformal mappings on homogeneous groups,” in: Contemporary Problems on Geometry and Analysis [in Russian], Nauka, Novosibirsk, 1989, pp. 45–89.Google Scholar
  15. 15.
    S. K. Vodop'yanov, Geometric Aspects of the Spaces of Functions Differentiable in a Generalized Sense [in Russian], Dis. Dokt. Fiz.-Mat. Nauk, Inst. Mat. (Novosibirsk), Novosibirsk (1992).Google Scholar
  16. 16.
    M. Brelot, Fundamentals of Classical Potential Theory [Russian translation], Mir, Moscow (1964).Google Scholar
  17. 17.
    N. Aronszajn and K. T. Smith, “Functional spaces and functional completion,” Ann. Inst. Fourier (Grenoble),6, 125–185 (1956).Google Scholar
  18. 18.
    D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Acad. Press, New York (1980).Google Scholar
  19. 19.
    N. Wiener, “Certain notions in potential theory,” J. Math. Phys.,3, 24–51 (1924).Google Scholar
  20. 20.
    S. K. Vodop'yanov, “Thin sets in weighted potential theory and degenerate elliptic equations,” Sibirsk. Mat. Zh.,36, No. 1, 28–36 (1995).Google Scholar
  21. 21.
    T. Bagby, “Quasi-topologies and rational approximation,” J. Funct. Anal.,10, 259–268 (1972).Google Scholar
  22. 22.
    J. C. Polking, “Approximation inL p by solutions of elliptic partial differential equations,” Amer. Math. J.,94, 1231–1244 (1972).Google Scholar
  23. 23.
    V. I. Burenkov, “On approximation of functions in the spacesW pr(Ω) by compactly-supported functions for an arbitrary open set Ω,” Trudy Mat. Inst. Steklov,131, 51–63 (1974).Google Scholar
  24. 24.
    L. I. Hedberg, “Spectral synthesis in Sobolev spaces, and uniqueness of solutions of the Dirichlet problem,” Acta Math.,147, 237–264 (1981).Google Scholar
  25. 25.
    N. O. Belova, “Spectral synthesis in weighted Sobolev spaces,” Mat. Zametki,50, No. 2, 136–139 (1994).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • S. K. Vodop'yanov
    • 1
  1. 1.Novosibirsk

Personalised recommendations