Advertisement

Siberian Mathematical Journal

, Volume 36, Issue 2, pp 235–245 | Cite as

Hyperbolic volumes of Fibonacci manifolds

  • A. Yu Vesnin
  • A. D. Mednykh
Article

Keywords

Hyperbolic Volume Fibonacci Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Conway, “Advanced problem 5327,” Amer. Math. Monthly,72, 915 (1965).Google Scholar
  2. 2.
    J. Conway, “Solution to Advanced problem 5327,” Amer. Math. Monthly,74, 91–93 (1967).Google Scholar
  3. 3.
    G. Havas, “Computer aided determination of a Fibonacci group,” Bull. Austral. Math. Soc.,15, 297–305 (1976).Google Scholar
  4. 4.
    M. F. Newman, “Proving a group infinite,” Arch. Math.,54, No. 3, 209–211 (1990).Google Scholar
  5. 5.
    H. Helling, A. C. Kim, and J. Mennicke, A Geometric Study of Fibonacci Groups [Preprint/SFB-343, Diskrete Strukturen in der Mathematik], Bielefeld (1990).Google Scholar
  6. 6.
    R. M. Thomas, “The Fibonacci groupsF(2,2m),” Bull. London Math. Soc.,21, No. 5, 463–465 (1989).Google Scholar
  7. 7.
    D. L. Johnson, J. W. Wamsley, and D. Wright, “The Fibonacci groups,” Proc. London Math. Soc.,29, 577–592 (1974).Google Scholar
  8. 8.
    H. M. Hilden, M. T. Lozano, and J. M. Montesinos, “The arithmeticity of the figure eight knot orbifolds,” in: Topology'90, Contrib. Res. Semester Low Dimensional Topology, Columbus/OH (USA) 1990, Ohio State Univ. Math. Res. Inst. Publ., 1992, pp. 169–183.Google Scholar
  9. 9.
    J. Hempel, “The lattice of branched covers over the figure-eight knot,” Topology Appl.,34, No. 2, 183–201 (1990).Google Scholar
  10. 10.
    S. V. Matveev and A. T. Fomenko, “Constant energy surfaces of Hamiltonian systems, enumeration of three-dimensional manifolds in increasing order of complexity, and computation of volumes of closed hyperbolic manifolds,” Uspekhi Mat. Nauk,43, No. 1, 5–22 (1988).Google Scholar
  11. 11.
    J. Weeks, Hyperbolic Structures on 3-Manifolds, Ph. D. Thesis, Princeton Univ., Princeton (1985).Google Scholar
  12. 12.
    W. P. Thurston, The Geometry and Topology of Three-Manifolds, Princeton Univ., Princeton (1980) (Lecture Notes in Math.).Google Scholar
  13. 13.
    R. Meyerhoff and W. D. Neumann, “An asymptotic formula for the eta invariants of hyperbolic 3-manifolds,” Comment. Math. Helv.,67, 28–46 (1992).Google Scholar
  14. 14.
    D. Rolfsen, Knots and Links, Publish or Perish Inc., Berkeley, Ca. (1976).Google Scholar
  15. 15.
    J. Milnor, “Hyperbolic geometry: the first 150 years,” Bull. Amer. Math. Soc., V. 6. P. 9–25 (1982).Google Scholar
  16. 16.
    È. B. Vinberg, “Volumes of non-Euclidean polyhedrons,” Uspekhi Mat. Nauk,48, No. 2, 17–46 (1993).Google Scholar
  17. 17.
    W. D. Neumann and D. Zagier, “Volumes of hyperbolic three-manifolds,” Topology,24, No. 3, 307–322 (1985).Google Scholar
  18. 18.
    R. H. Crowell and R. H. Fox, Introduction to Knot Theory, Ma.: Ginn and Co., Boston (1963).Google Scholar
  19. 19.
    A. Borel, “Commensurability classes and hyperbolic volumes,” Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4),8, 1–33 (1991).Google Scholar
  20. 20.
    A. W. Reid, “Arithmeticity of knot complements,” J. London Math. Soc. (2),43, No. 1, 171–184 (1991).Google Scholar
  21. 21.
    R. Riley, “An elliptical path from parabolic representations to hyperbolic structures,” Lecture Notes in Math.,722, 99–133 (1979).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • A. Yu Vesnin
    • 1
  • A. D. Mednykh
    • 1
  1. 1.Novosibirsk

Personalised recommendations