Skip to main content
Log in

An invariant trace formula for the universal covering group of SL(2,ℝ)

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

Automorphic forms of arbitrary real weight can be considered as functions on the universal covering group of SL(2, ℝ). In this situation, we prove an invariant form of the Selberg trace formula for Hecke operators. For this purpose, the Fourier transforms of weightet orbital integrals, obtained by J. Arthur, R. Herb and P. Sally, jr., are explicitly calculated. Our formula does not follow from Arthur's invariant trace formula, since the group has infinite centre, and vector-valued automorphic forms with respect to non-congruence lattices are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akiyama, S.: Selberg trace formula for odd weight.Proc. Japan Acad. 64 (1988), no. 9, Ser. A, 341–344.

    Google Scholar 

  2. Arthur, J.: Some tempered distributions on semisimple Lie groups of real rank one.Ann. Math. 100 (1974), 553–584.

    Google Scholar 

  3. Arthur, J.: The characters of discrete series as orbital integrals.Inv. Math. 32 (1976), 205–261.

    Google Scholar 

  4. Arthur, J.: The trace formula in invariant form.Ann. Math. 114 (1981), 1–74.

    Google Scholar 

  5. Arthur, J.;Herb, R.A.;Sally, jr., P.J.: The Fourier transform of weighted orbital integrals on SL(2, ℝ). In:The Selberg trace formula and related topics. Proceedings of a Summer Research conference held at Bowdoin College in July 22–28, 1984; D. A. Hejhal, P. Sarnak, A. A. Terras (eds.) Contemporary mathematics, vol. 53, Amer. Math. Soc., Providence, RI, 1986, 17–37.

    Google Scholar 

  6. Borel, A.: Density properties of certain subgroups of semisimple groups.Ann. Math. 72 (1960), 179–188.

    Google Scholar 

  7. Colin De Verdière, Y.: Une nouvelle démonstration du prolongement méromorphe de séries d'Eisenstein.C. R. Acad. Sci. Paris Sér. I Math. 293 (1981), 361–363.

    Google Scholar 

  8. Colin de Verdière, Y: Pseudo-Laplaciens II.Ann. Inst. Fourier 33 (1983), 87–113.

    Google Scholar 

  9. Elstrodt, J.: Die Resolvente zum Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene. Teil I.Math. Annalen 203 (1973), 295–330. Teil II.Math. Zeitschrift 132 (1973), 99–134. Teil III.Math. Annalen 208 (1974), 99–132.

    Google Scholar 

  10. Fischer, J.:An approach to the Selberg trace formula via the Selberg zeta function. Lecture Notes in Math., Vol. 1253, Springer-Verlag, Berlin Heidelberg New York 1987.

    Google Scholar 

  11. Gelfand, I.M.;Graev, M.I.;Piatetski-Shapiro, I.I.:Representation theory and automorphic functions. Saunders, Philadelphia 1969.

    Google Scholar 

  12. Harish-Chandra: Discrete series for semisimple Lie groups. II.Acta Math. 116 (1966), 1–111.

    Google Scholar 

  13. Harish-Chandra: Plancherel formula for the 2×2 real unimodular group.Proc. Nat. Acad. Sci. USA 38 (1952), 337–342.

    Google Scholar 

  14. Harish-Chandra: The characters of semisimple Lie groups.Trans. Amer. Math. Soc. 83 (1956), 98–163.

    Google Scholar 

  15. Harish-Chandra: Harmonic analysis on real reductive groups III. The Maas-Selberg relations and the Plancherel formula.Ann. Math. 104 (1976), 117–201.

    Google Scholar 

  16. Hejhal, D.A.:The Selberg trace formula for PSL(2, ℝ), Vol. 2. Lecture Notes in Math., vol. 1001, Springer-Verlag, Berlin Heidelberg New York 1983.

    Google Scholar 

  17. Hoffmann, W.: The trace formula for Hecke operators over rank one lattices.J. Funct. Anal. 84 (1989), 373–440.

    Google Scholar 

  18. Jacquet, H.;Langlands, R.P.:Automorphic forms on GL(2). Lecture Notes in Math., vol. 114, Springer-Verlag, Berlin Heidelberg New York 1970.

    Google Scholar 

  19. Kubota, T.:Elementary theory of Eisenstein series. Kodansha, Tokyo 1973.

    Google Scholar 

  20. Lang, S.: SL(2, ℝ). Addison-Wesley, Reading 1975.

    Google Scholar 

  21. Molchanov, V.: Plancherel formula for pseudo Riemannian symmetric spaces of the universal covering group of SL(2, ℝ).Siberian Math. J. 25 (1984), 903–917.

    Google Scholar 

  22. Osborne, M.S., Warner, G.:The theory of Eisenstein systems. Academic Press, New York 1981.

    Google Scholar 

  23. Osborne, M.S., Warner, G.: The Selberg trace formula I: Γ-rank one lattices.J. Reine Angew. Math. 324 (1981), 1–113.

    Google Scholar 

  24. Petersson, H.: Zur analytischen Theorie der Grenzkreisgruppen. Teil I.Math. Annalen 115 (1938), 23–67. Teil II.Math. Zeitschrift 44 (1939), 127–155.

    Google Scholar 

  25. Pukanszky, L.: The Plancherel formula for the universal covering group of SL(2, ℝ).Math. Ann. 156 (1964), 96–143.

    Google Scholar 

  26. Raghunathan, M.S.:Discrete subgroups of Lie Groups. Springer-Verlag, Berlin Heidelberg New York 1972.

    Google Scholar 

  27. Roelcke, W.: Das Eigenwertproblem der automorophen Formen in der hyperbolischen Ebene I.Math. Ann. 167 (1966), 292–337. II.Math. Ann. 168 (1967), 261–324.

    Google Scholar 

  28. Sally, P.: Analytic continuation of the irreducible unitary representations of the universal covering group of SL(2, ℝ).Mem. Amer. Math. Soc. 69 (1967), 1–94.

    Google Scholar 

  29. Sally, P.: Intertwining operators and the representations of SL(2, ℝ).J. Funct. Anal. 6 (1960), 441–453.

    Google Scholar 

  30. Varadarajan, V.S.:An introduction to harmonic analysis on semisimple Lie groups. Cambridge studies in advanced mathematics, vol. 16, Cambridge Univ. Press, Cambridge 1989.

    Google Scholar 

  31. Warner, G.: Application of the Selberg trace formula to the Riemann-Roch theorem.J. Differential Geom. 27 (1988), 23–24.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmann, W. An invariant trace formula for the universal covering group of SL(2,ℝ). Ann Glob Anal Geom 12, 19–63 (1994). https://doi.org/10.1007/BF02108286

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02108286

Key words

MSC 1991

Navigation