Advertisement

Communications in Mathematical Physics

, Volume 158, Issue 2, pp 341–371 | Cite as

Ferromagnetism in the Hubbard model

Examples from models with degenerate single-electron ground states
  • Andreas Mielke
  • Hal Tasaki
Article

Abstract

Whether spin-independent Coulomb interaction can be the origin of a realistic ferromagnetism in an itinerant electron system has been an open problem for a long time. Here we study a class of Hubbard models on decorated lattices, which have a special property that the corresponding single-electron Schrödinger equation hasNd-fold degenerate ground states. The degeneracyNd is proportional to the total number of sites |Λ|. We prove that the ground states of the models exhibit ferromagnetism when the electron filling factor is not more than and sufficiently close toϱ=Nd/(2|Λ|), and paramagnetism when the filling factor is sufficiently small. An important feature of the present work is that it provides examples of three dimensional itinerant electron systems which are proved to exhibit ferromagnetism in a finite range of the electron filling factor.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Open Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aizenman, M., Lieb, E.H.: Phys. Rev. Lett.65, 1470 (1990)Google Scholar
  2. 2.
    Bloch, F.: Z. Phys.57, 545 (1929)Google Scholar
  3. 3.
    Dopf, G., Wagner, J., Dietrich, P., Muramatsu, A., Hanke, W.: Helv. Phys. Acta65, 257 (1992)Google Scholar
  4. 4.
    Douçot, B., Wen, X.G.: Phys. Rev. B40, 2719 (1989)Google Scholar
  5. 5.
    Ghosh, D.K.: Phys. Rev. Lett.27, 1584 (1971)Google Scholar
  6. 6.
    Griffiths, R.B.: In: Phase transitions and critical phenomena 1, Dombs, C., Green, M.S. (eds.) New York: Academic Press 1972Google Scholar
  7. 7.
    Grimmett, G.: Percolation. Berlin, Heidelberg, New York: Springer 1989Google Scholar
  8. 8.
    Heisenberg, W.J.: Z. Phys.49, 619 (1928)Google Scholar
  9. 9.
    Herring, C.: In: Magnetism IIB. Rado, G.T., Suhl, H. (eds.) New York, London: Academic Press 1966Google Scholar
  10. 10.
    Herring, C.: In: Magnetism IV. Rado, G.T., Suhl, H. (eds.) New York, London: Academic Press 1966Google Scholar
  11. 11.
    Hubbard, J.: Proc. Roy. Soc. (London) A276, 238 (1963)Google Scholar
  12. 12.
    Janiš, V., Mašek, J., Vollhardt, D.: PreprintGoogle Scholar
  13. 13.
    Kanamori, J.: Prog. Theor. Phys.30, 275 (1963)Google Scholar
  14. 14.
    Koma, T., Tasaki, H.: Phys. Rev. Lett.68, 3248 (1992)Google Scholar
  15. 15.
    Kusakabe, K., Aoki, H.: J. Phys. Soc. Jpn.61, 1165 (1992)Google Scholar
  16. 16.
    Kusakabe, K., Aoki, H.: Proceedings for 20th International Conference on Low Temperature Physics. To appear in Physica B, and preprintGoogle Scholar
  17. 17.
    Lieb, E.H.: In: Phase transitions. Proceedings of the fourteenth Solvay conference. New York: Wiley, Interscience 1971, p. 45Google Scholar
  18. 18.
    Lieb, E.H.: Phys. Rev. Lett.62, 1201 (1989)Google Scholar
  19. 19.
    Lieb, E.H., Mattis, D.: Phys. Rev.125, 164 (1962)Google Scholar
  20. 20.
    Mielke, A.: J. Phys. A: Math. Gen.24, L73 (1991)Google Scholar
  21. 21.
    Mielke, A.: J. Phys. A: Math. Gen.24, 3311 (1991)Google Scholar
  22. 22.
    Mielke, A.: J. Phys. A: Math. Gen.25, 4335 (1992)Google Scholar
  23. 23.
    Mielke, A.: Phys. Lett. A174, 443 (1993)Google Scholar
  24. 24.
    Nagaoka, Y.: Phys. Rev.147, 392 (1966)Google Scholar
  25. 25.
    Shastry, B.S., Krishnamurthy, H.R., Anderson, P.W.: Phys. Rev. B41, 2375 (1990)Google Scholar
  26. 26.
    Slater, J.C., Statz, H., Koster, G.F.: Phys. Rev.91, 1323 (1953)Google Scholar
  27. 27.
    Sütő, A.: Phys. Rev. B43, 8779 (1991)Google Scholar
  28. 28.
    Sütő, A.: Commun. Math. Phys.140, 43 (1991)Google Scholar
  29. 29.
    Tasaki, H.: Phys. Rev. B40, 9192 (1989)Google Scholar
  30. 30.
    Tasaki, H.: Phys. Rev. Lett69, 1608 (1992)Google Scholar
  31. 31.
    Thouless, D.J.: Proc. Phys. Soc. Lond.86, 893 (1965)Google Scholar
  32. 32.
    Tóth, B.: Lett. Math. Phys.22, 321 (1991)Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Andreas Mielke
    • 1
  • Hal Tasaki
    • 2
  1. 1.Institut für Theoretische PhysikUniversität HeidelbergHeidelbergGermany
  2. 2.Department of PhysicsGakushuin UniversityTokyoJapan

Personalised recommendations