Advertisement

Communications in Mathematical Physics

, Volume 158, Issue 2, pp 315–325 | Cite as

Internal Lifschitz singularities for one dimensional Schrödinger operators

  • G. A. Mezincescu
Article

Abstract

The integrated density of states of the periodic plus random one-dimensional Schrödinger operator\(H_\omega = - \Delta + V_{per} + \sum\limits_i {qi\left( \omega \right)f\left( {o - i} \right)} \);f≥0,q i (ω)≥0, has Lifschitz singularities at the edges of the gaps inSp(Hω). We use Dirichlet-Neumann bracketing based on a specifically one-dimensional construction of bracketing operators without eigenvalues in a given gap of the periodic ones.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carmona, R., Lacroix, J.: Spectral theory of Random Schrödinger operators Boston, Basel, Berlin: Birkhäuser 1990Google Scholar
  2. 2.
    Eastham, M.S.P.: The spectral theory of periodic differential equations. Edinburgh: Scottish Academic Press 1983Google Scholar
  3. 3.
    Fukushima, M.: On the spectral distribution of a disordered system and the range of a random walk. Osaka J. Math.11, 73–85 (1974)Google Scholar
  4. 4.
    Kirsch, W., Martinelli, F.: On the spectrum of Schrödinger operators with a random potential. Commun. Math. Phys.85, 329–350 (1985)Google Scholar
  5. 5.
    Kirsch, W., Martinelli, F.: Large deviations and the Lifschitz singularity of the integrated density of states of random Hamiltonians. Commun. Math. Phys.89, 27–40 (1983)Google Scholar
  6. 6.
    Kirsch, W., Nitzschner, F.: Lifschitz tails and non-Lifschitz tails for one dimensional random point interactions. Operator theory: advanced applications, Vol. 46. Exner, P., Neidhardt, H. (eds.) Basel: Birkhäuser 1990Google Scholar
  7. 7.
    Kirsch, W., Simon, B.: Lifschitz tails for periodic plus random potentials. J. Stat. Phys.42, 799–808 (1986)Google Scholar
  8. 8.
    Lifschitz, I.M.: The energy spectrum of disordered systems. Adv. Phys.13, 483–536 (1964)Google Scholar
  9. 9.
    Lifschitz, I.M., Gredeskul, S.A., Pastur, L.A.: Introduction to the theory of disordered systems. Moscow: Nauka 1982Google Scholar
  10. 10.
    Mezincescu, G.A.: Bounds on the integrated density of electronic states for disordered Hamiltonians. Phys. Rev. B32, 6272 (1985)Google Scholar
  11. 11.
    Mezincescu, G.A.: Internal Lifschitz singularities of disordered finite-difference Schrödinger operators. Commun. Math. Phys.103, 167–176 (1986)Google Scholar
  12. 12.
    Mezincescu, G.A.: Lifschitz singularities for periodic plus random potentials. J. Stat. Phys.49, 1181–1190 (1987)Google Scholar
  13. 13.
    Pastur, L.A.: On the distribution of eigenvalues of the Schrödinger equation with a random potential. Funkt. Anal. Appl.6, 163–165 (1972)Google Scholar
  14. 14.
    Pastur, L.A.: Behaviour of some Wiener integrals ast → ∞ and the density of states of Schrödinger's equation with a random potential. Teor. Mat. Fiz.32, 88–95 (1977)Google Scholar
  15. 15.
    Pastur, L.A.: Spectral properties of disordered systems in the one-body approximation. Commun. Math. Phys.75, 179–196 (1980)Google Scholar
  16. 16.
    Reed, M., Simon, B.: Methods of modern mathematical physics. IV. Analysis of operators. New York: Academic 1978Google Scholar
  17. 17.
    Simon, B.: Lifschitz tails for the Anderson model. J. Stat. Phys.38, 65–76 (1985)Google Scholar
  18. 18.
    Simon, B.: Internal Lifschitz tails. J. Stat. Phys.46, 911–918 (1987)Google Scholar
  19. 19.
    Simon, B.: Regularity of the density of states for stochastic Jacobian matrices. A review. In: Random media. Papanicolaou, G. (ed.) New York: Springer 1987, pp. 245–266Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • G. A. Mezincescu
    • 1
  1. 1.Institut für MathematikRuhr-Universität BochumGermany

Personalised recommendations