Communications in Mathematical Physics

, Volume 158, Issue 2, pp 267–288 | Cite as

On the biHamiltonian structure of the supersymmetric KdV hierarchies. A Lie superalgebraic approach

  • Carlo Morosi
  • Livio Pizzocchero


We give a Lie superalgebraic interpretation of the biHamiltonian structure of known supersymmetric KdV equations. We show that the loop algebra of a Lie superalgebra carries a natural Poisson pencil, and we subsequently deduce the biHamiltonian structure of the supersymmetric KdV hierarchies by applying to loop superalgebras an appropriate reduction technique. This construction can be regarded as a superextension of the Drinfeld-Sokolov method for building a KdV-type hierarchy from a simple Lie algebra.


Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Ber] Berezin, F.: Introduction to superanalysis. Dordrecht: D. Reidel 1987Google Scholar
  2. [CMP] Casati, P., Magri, F., Pedroni, M.: BiHamiltonian manifolds and the τ-function. Proceedings of the 1991 Joint Summer Research Conference on Mathematical aspects of Classical Field Theory (M. Gotai, J. Marsden, V. Moncrief, eds.), in Contemporary Math.132, 213–234 (1992)Google Scholar
  3. [Cor] Cornwell, J.: Group theory in Physics Vol. III. London: Academic Press 1989Google Scholar
  4. [CP] Casati, P., Pedroni, M.: Drinfeld-Sokolov reduction on a simple Lie algebra from the biHamiltonian point of view. Lett. Math. Phys.25, 89–101 (1992)Google Scholar
  5. [DS] Drinfeld, V., Sokolov, V.: Lie algebras and equations of Korteweg-de Vries type. Sov. J. Mat.30, 1975–2036 (1985)Google Scholar
  6. [FMR] Figueroa-O'Farill, J., Mas, J., Ramos, E.: Integrability and biHamiltonian structure of the even order sKdV hierarchies. Rev. Mat. Phys.3, 479–501 (1991)Google Scholar
  7. [FSS] Frappat, L., Sciarrino, A., Sorba, P.: Structure of basic Lie superalgebras and of their affine extensions. Commun. Math. Phys.121, 457–500 (1989)Google Scholar
  8. [GO] Gursus, M., Oguz, O.: A super AKNS scheme. Phys. Lett.108 A, 437–440 (1985)Google Scholar
  9. [IK] Inami, T., Kanno, H.: Lie superalgebraic approach to super Toda lattice and generalized super KdV equations. Commun. Math. Phys.136, 519–542 (1991)Google Scholar
  10. [Ino] Inoue, A.: Foundation of real analysis on the superspace ℛm, n over the ∞-dimensional Fréchet-Grassmann algebra. J. Fac. Sci. Univ. Tokio, Sect. IA Math.39, 419–474 (1992)Google Scholar
  11. [JP] Jadczyk, A., Pilch, K.: Superspaces and supersymmetries. Commun. Math. Phys.78, 373–390 (1981)Google Scholar
  12. [Kac] Kac, V.: Lie superalgebras. Advances in Math.26, 8–96 (1977); Infinite-dimensional algebras, Dedekind's η-functions, classical Möbius function and the very strange formula. Advances in Math.30, 85–136 (1978)Google Scholar
  13. [Kup] Kupershmidt, B.: A super Kortwerg-de Vries equation. Phys. Lett.102A, 213–215 (1984)Google Scholar
  14. [Lei] Leites, D.: Introduction to the theory of supermanifolds. Russ. Math. Surv.35, 1–64 (1980)Google Scholar
  15. [LM] Laberge, C., Mathieu, P.:N=2 superconformal algebra and integrableO(2) fermionic extension of the KdV equations. Phys. Lett.215 B, 718–722 (1988)Google Scholar
  16. [LMV] Landi, G., Marmo, G., Vilasi, G.: Remarks on the complete integrability of dynamical systems with fermionic variables. Quaderno 256, Dipartimento di Scienze Mathematiche, Univ. Trieste (1992)Google Scholar
  17. [Mag] Magri, F.: A simple model of the integrable Hamiltonian equation. J. Math. Phys.19, 1156–1162 (1978)Google Scholar
  18. [MaR] Marsden, J.E., Ratiu, T.: Reduction of Poisson Manifolds. Lett. Math. Phys.11, 161–169 (1986)Google Scholar
  19. [Mat] Mathieu, P.: Supersymmetric extension of the Korteweg-de Vries equation. J. Math. Phys.29, 2499–2506 (1988)Google Scholar
  20. [MP] Morosi, C., Pizzocchero, L.: in preparationGoogle Scholar
  21. [MR] Manin, Y., Radul, A.: A supersymmetric extension of the Kadomtsev-Petviashvili hierarchy. Commun. Math. Phys.98, 65–77 (1985)Google Scholar
  22. [New] Newell, A.: Solitons in Mathematics and Physics. Philadelphia, PA: S.I.A.M. 1985Google Scholar
  23. [Nij] Nijenhuis, A.:X n−1-forming sets of eigenvectors. Proc. Kon. Ak. Ned. Wet. Amsterdam A54, 200–212 (1951)Google Scholar
  24. [OP] Oevel, W., Popowicz, Z.: The bi-Hamiltonian structure of fully supersymmetric Kortweg-de Vries systems. Commun. Math. Phys.139, 441–460 (1991)Google Scholar
  25. [Sem] Semenov-Tian Shansky, M.: What is a classicalr-matrix?. Funct. Anal. Appl.17, 259–272 (1983)Google Scholar
  26. [SS] Salam, A. J., Strathdee, J.: Superfields and Fermi-Bose Symmetry. Phys. Rev.D11, 1521–1535 (1975)Google Scholar
  27. [VV] Vladimirov, V., Volovic, I.: Superanalysis I. Differential Calculus. Theor. Math. Phys.59, 317–335 (1984); Superanalysis. II. Integral Calculus. Theor. Math. Phys.60, 743–765 (1985)Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Carlo Morosi
    • 1
  • Livio Pizzocchero
    • 2
    • 3
  1. 1.Dipartimento di MatematicaPolitecnico di MilanoMilanoItaly
  2. 2.Dipartimento di MatematicaUniversità di MilanoMilanoItaly
  3. 3.Istituto Nazionale di Fisica NucleareItaly

Personalised recommendations