Communications in Mathematical Physics

, Volume 158, Issue 2, pp 217–240 | Cite as

The extended loop group: An infinite dimensional manifold associated with the loop space

  • Cayetano Di Bartolo
  • Rodolfo Gambini
  • Jorge Griego


A set of coordinates in the non-parametric loop-space is introduced. We show that these coordinates transform under infinite dimensional linear representations of the diffeomorphism group. An extension of the group of loops in terms of these objects is proposed. The enlarged group behaves locally as an infinite dimensional Lie group. Ordinary loops form a subgroup of this group. The algebraic properties of this new mathematical structure are analyzed in detail. Applications of the formalism to field theory, quantum gravity and knot theory are considered.


Neural Network Manifold Nonlinear Dynamics Quantum Gravity Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mandelstam, S.: Ann. Phys.19, 1 (1962)Google Scholar
  2. 2.
    Kogut, J., Susskind, L.: Phys. Rev.D11, 395 (1975)Google Scholar
  3. 3.
    'tHooft, G.: Nucl. Phys.B153, 141 (1979)Google Scholar
  4. 4.
    Polyakov, A.M.: Phys. Lett.B82, 247 (1979); Nucl. Phys.B164, 171 (1980)Google Scholar
  5. 5.
    Makeenko, Yu.M., Migdal, A.A.: Nucl. Phys.B188, 269 (1981)Google Scholar
  6. 6.
    Durhuus, B., Olesen, P.: Nucl. Phys.B189, 406 (1981)Google Scholar
  7. 7.
    Ashtekar, A.: New perspectives in canonical gravity (with invited contributions). Lecture Notes, Naples: Bibliopolis 1988Google Scholar
  8. 8.
    Gambini, R., Trias, A.: Phys. Rev.D22, 1380 (1980); Nucl. Phys.B278., 436 (1986)Google Scholar
  9. 9.
    Gambini, R., Trias, A.: Phys. Rev.D23, 553 (1981)Google Scholar
  10. 10.
    Gambini, R., Trias, A.: Phys. Rev.D27, 2935 (1983)Google Scholar
  11. 11.
    Gambini, R., Trias, A.: Phys. Rev.D31, 3144 (1985)Google Scholar
  12. 12.
    Gambini, R., Griego, J.: Phys. Lett.B256, 437 (1991)Google Scholar
  13. 13.
    Rovelli, C., Smolin, L.: Nucl. Phys.B331, 80 (1990)Google Scholar
  14. 14.
    Rovelli, C.: Class. and Quantum Grav.8, 1613 (1991)Google Scholar
  15. 15.
    Ashtekar, A.: Phys. Rev. Lett.57, 2244 (1986)Google Scholar
  16. 16.
    Smolin, L.: Nonperturbative quantum gravity: The emergence of discrete structure at the Planck scale. Preprint Syracuse/1991Google Scholar
  17. 17.
    Jacobson, T., Smolin, L.: Nucl. Phys.B299, 295 (1988)Google Scholar
  18. 18.
    Gambini, R.: Phys. Lett.B255, 180 (1991)Google Scholar
  19. 19.
    Brugmann, B., Gambini, R., Pullin, J.: Phys. Rev. Lett.68, 431 (1992)Google Scholar
  20. 20.
    Witten, E.: Commun. Math. Phys.121, 351 (1989)Google Scholar
  21. 21.
    Jones, V.F.R.: Bull. Am. Math. Soc.12, 103 (1985)Google Scholar
  22. 22.
    Freyd, P.: Bull. Am. Math. Soc.12, 239 (1985)Google Scholar
  23. 23.
    Wadati, M., Deguchi, T., Akutsu, Y.: Phys. Rep.180, 247 (1989)Google Scholar
  24. 24.
    Gambini, R., Leal, L.: Preprint IFFI-91.01 (1991), MontevideoGoogle Scholar
  25. 25.
    The selfdual property of the connection in the Ashtekar formalism implies that the SL(2,c) group of Quantum Gravity can be reduced to an SU(2) group. See for example Rovelli, C., op. cit.Google Scholar
  26. 26.
    Jackiw, R.: Phys. Rev. Lett.41, 1635 (1978)Google Scholar
  27. 27.
    Aref'eva, Y.Ya.: Lett. Math. Phys.3, 241 (1979)Google Scholar
  28. 28.
    Dolan, L.: Phys. Rev.D22, 3104 (1980)Google Scholar
  29. 29.
    Durhuus, B., Leinaas, J.M.: Phys. Scr.25, 504 (1982)Google Scholar
  30. 30.
    Fustero, X., Gambini, R., Trias, A.: Phys. Rev.D31, 3144 (1985)Google Scholar
  31. 31.
    Makeenko, Yu.M., Migdal, A.A.: Phys. Lett. B88, 135 (1979)Google Scholar
  32. 32.
    Ashtekar's private communicationGoogle Scholar
  33. 33.
    Guadagnini, E., Martellini, M., Mintchev, M.: Nucl. Phys.B330, 575 (1990)Google Scholar
  34. 34.
    Ashtekar, A., Rovelli, C.: Quantum Faraday lines: Loop representation of the Maxwell theory. Syracuse preprint 1991Google Scholar
  35. 35.
    Note that the zero rank component of E plays a role analogous to the determinant. For this reason we introduce the name Special when selectingE=1.Google Scholar
  36. 36.
    Notice that\(F = \left( {0,\vec F} \right)\) with\(\vec F\) ∈ ℱ, being ℱ the vector space considered at the end of Sect. 3.1. The vanishing of the component of rank zero makes this vector space isomorphic to the one defined by theF's. For this reason we denote both spaces with the same symbol.Google Scholar
  37. 37.
    Bartolo, C.Di., Nori, F., Gambini, R., Trias, A.: Lett. Nuovo Cimento38, 497 (1983)Google Scholar
  38. 38.
    Ashtekar, A., Rovelli, C., Smolin, L.: Phys. Rev.D44, 1740 (1991)Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Cayetano Di Bartolo
    • 1
  • Rodolfo Gambini
    • 2
  • Jorge Griego
    • 2
  1. 1.Departamento de FísicaUniversidad Simón BolívarCaracasVenezuela
  2. 2.Facultad de CienciasInstituto de FísicaMontevideoUruguay

Personalised recommendations