Advertisement

Siberian Mathematical Journal

, Volume 37, Issue 6, pp 1199–1211 | Cite as

On bifurcation of solutions to the Vlasov-Maxwell system

  • N. A. Sidorov
  • A. V. Sinitsyn
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Degond, “Solutions stationnaires explicites du système de Vlasov-Maxwell relativiste,” C. R. Acad. Sci. Paris. Ser. I Math.,310, No. 7, 607–612 (1990).Google Scholar
  2. 2.
    C. Greengard and P. A. Raviart, “A boundary-value problem for the stationary Vlasov-Poisson equations: the plane diode,” Comm. Pure Appl. Math.,43, 473–507 (1990).Google Scholar
  3. 3.
    D. Gogny and P. L. Lions, “Sur les étas d'équilibre pour les densités électroniques dans les plasmas,” in: Mathematical Modelling and Numerical Analysis, 1989,23, No. 1, pp. 137–153.Google Scholar
  4. 4.
    F. Poupaud, “Boundary-value problems for the stationary Vlasov-Maxwell system,” Forum Math., No. 4, 499–527 (1992).Google Scholar
  5. 5.
    P. Degond, The Child-Langmuir Law in the Kinetic Theory of Charged Particles. I. Electron Flows in Vacuum [Preprint], C.N.R.S. UFR MIG, Universite Paul Sabatier (1994).Google Scholar
  6. 6.
    N. Ben Abdallah and P. Degond, The Child-Langmuir Law in the Kinetic Theory of Charged Particles. II. Magnetized Flows; III. Semiconductor Models (in preparation).Google Scholar
  7. 7.
    J. Dolbeault, “Solutions invariantes par translation, ou par rotation, ou stationnaires en temps du systeme de Vlasov-Maxwell pour un systeme a plusieurs espaces de particules,” in: Mathematical Problems in Mechanics, 1994 (to appear).Google Scholar
  8. 8.
    J. Dolbeault, “Classification des solutions stationnaires axisymetriques regulieres du systeme de Vlasov-Maxwell,” in: Mathematical Problems in Mechanics, 1994 (to appear).Google Scholar
  9. 9.
    J. Weckler, “The Vlasov-Poisson system on a bounded domain,” in: Abstracts: International Conference“Nonlinear Equations in Many-Particle Systems,” Mathematisches Forschungsinstitut Oberwolfach, 1993, p. 12.Google Scholar
  10. 10.
    J. Batt, H. Berestycki, P. Degond, and B. Perthame, “Some families of solutions of the Vlasov-Poisson system,” Arch. Rational Mech. Anal.,104, No. 1, 79–103 (1988).CrossRefGoogle Scholar
  11. 11.
    J. P. Holloway and J. J. Dorning, “Nonlinear but small amplitude longitudinal plasma waves,” in: Operator Theory: Advances and Applications, 1991,51, pp. 155–179.Google Scholar
  12. 12.
    J. P. Holloway, Longitudinal Travelling Waves Bifurcating from Vlasov Plasma Equilibria, Ph. D. Dissertation in Engineering Physics, University of Virginia, Charlottesville, Virginia (1989).Google Scholar
  13. 13.
    M. Hesse and K. Schindler, “Bifurcation of current sheets in plasmas,” Phys. Fluids,29, No. 8, 2484–2492 (1986).CrossRefGoogle Scholar
  14. 14.
    Y. Markov, G. Rudykh, N. Sidorov, A. Sinitsyn, and D. Tolstonogov, “Steady-state solutions of the Vlasov-Maxwell system and their stability,” Acta Appl. Math.,28, 253–293 (1992).CrossRefGoogle Scholar
  15. 15.
    N. A. Sidorov and V. A. Trenogin, “Study of bifurcation points and continuous branches of solutions to nonlinear equations,” in: Differential and Integral Equations [in Russian], Irkutsk. Univ., Irkutsk, 1972, No. 1, pp. 216–247.Google Scholar
  16. 16.
    V. A. Trenogin, Functional Analysis [in Russian], Nauka, Moscow (1980).Google Scholar
  17. 17.
    L. D. Kudryavtsev, A Course of Mathematical Analysis. Vol. 2 [in Russian], Vysshaya Shkola, Moscow (1981).Google Scholar
  18. 18.
    O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Equations of Elliptic Type [in Russian], Nauka, Moscow (1973).Google Scholar
  19. 19.
    M. M. Vainberg and V. A. Trenogin, Branch Theory of Solutions to Nonlinear Equations [in Russian], Nauka, Moscow (1968).Google Scholar
  20. 20.
    N. A. Sidorov, General Questions of Regularization in the Problems of Branch Theory [in Russian], Irkutsk. Univ., Irkutsk (1982).Google Scholar
  21. 21.
    P. S. Aleksandrov, Introduction to the Set Theory and General Topology [in Russian], Nauka, Moscow (1977).Google Scholar
  22. 22.
    P. H. Rabinovich, “Some global results for nonlinear eigen-value problems,” J. Funct. Anal., No. 7, 487–513 (1971).Google Scholar
  23. 23.
    V. V. Loginov and N. A. Sidorov, “Group symmetry of branching Lyapunov-Schmidt equations and iterative methods on the problem of a branch point,” Mat. Sb.,73, No. 1, 67–77 (1992).Google Scholar
  24. 24.
    N. A. Sidorov, “On an explicit parametrization of solutions to nonlinear equations in a neighborhood of a branch point,” Dokl. Akad. Nauk,336, No. 5, 592–595 (1994).Google Scholar
  25. 25.
    V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachev, and A. A. Rodionov, Applications of Group-Theoretic Methods to Hydrodynamics [in Russian], Nauka, Novosibirsk (1994).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • N. A. Sidorov
    • 1
  • A. V. Sinitsyn
    • 1
  1. 1.Irkutsk

Personalised recommendations