Advertisement

Siberian Mathematical Journal

, Volume 37, Issue 6, pp 1137–1142 | Cite as

On Hawkes's conjecture for radical classes

  • N. T. Vorob'ëv
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. A. Shemetkov and A. N. Skiba, Formations of Algebraic Systems [in Russian], Nauka, Moscow (1989).Google Scholar
  2. 2.
    K. Doerk and T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin and New York (1992).Google Scholar
  3. 3.
    A. N. Skiba, “Multiply local formations,” in: Abstracts: The Tenth All-Union Symposium on Group Theory, Minsk, 1986, p. 211.Google Scholar
  4. 4.
    T. O. Hawkes, “Sceletal classes of soluble groups,” Arch. Math.,22, No. 6, 577–589 (1971).CrossRefGoogle Scholar
  5. 5.
    R. A. Bryce and J. Cossey, “Fitting formations of finite soluble groups,” Math. Z.,127, No. 3, 217–223 (1972).CrossRefGoogle Scholar
  6. 6.
    B. Hartley, “On Fisher's dualization of formation theory,” Proc. London Math. Soc.,3, No. 9, 103–115 (1969).Google Scholar
  7. 7.
    P. D'Arcy, “Locally defined Fitting classes,” J. Austral. Math. Soc.,20, No. 1, 25–32 (1975).Google Scholar
  8. 8.
    L. A. Shemetkov, Formations of Finite Groups [in Russian], Nauka, Moscow (1978).Google Scholar
  9. 9.
    N. T. Vorob'ëv, “Local products of Fitting classes,” Vestsi Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk, No. 6, 22–26 (1991).Google Scholar
  10. 10.
    N. T. Vorob'ëv, “Localization of soluble hereditary Fitting classes,” Mat. Zametki,51, No. 3, 3–8 (1992).Google Scholar
  11. 11.
    N. T. Vorob'ëv, “On radical classes of finite groups with Lockett's condition,” Mat. Zametki,43, No. 2, 161–168 (1988).Google Scholar
  12. 12.
    A. Grytczuk and N. T. Vorob'ëv, “On Lockett's conjecture for finite groups,” Tsukuba J. Math.,18, No. 2, 63–67 (1994).Google Scholar
  13. 13.
    R. A. Bryce and J. Cossey, “Subgroup closed Fitting classes are formations,” Math. Proc. Cambridge Philos. Soc.,91, No. 2, 225–258 (1982).Google Scholar
  14. 14.
    R. A. Bryce and J. Cossey, “A problem in the theory of normal Fitting classes,” Math. Z.,141, No. 2, 99–110 (1975).CrossRefGoogle Scholar
  15. 15.
    J. Cossey, “Products of Fitting classes,” Math. Z.,141, No. 3, 289–295 (1975).CrossRefGoogle Scholar
  16. 16.
    L. A. Shemetkov and A. F. Vasil'ev, “On finite groups with prescribed Hall's subgroups,” in: Abstracts: The Sixth Conference of the Mathematicians of Belarus, Grodno, 1992, Part I, p. 56.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • N. T. Vorob'ëv
    • 1
  1. 1.Vitebsk

Personalised recommendations