Advertisement

Siberian Mathematical Journal

, Volume 37, Issue 6, pp 1113–1136 | Cite as

Monotone functions and quasiconformal mappings on Carnot groups

  • S. K. Vodop'yanov
Article

Keywords

Monotone Function Quasiconformal Mapping Carnot Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Lebesgue, “Sur le problème de Dirichlet,” Rend. Circ. Mat. Palermo,27, 371–402 (1907).Google Scholar
  2. 2.
    G. D. Mostow, “Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms,” Inst. Hautes études Sci. Publ. Math., No. 34, 53–104 (1968).Google Scholar
  3. 3.
    F. W. Gehring, “Symmetrization of rings in space,” Trans. Amer. Math. Soc.,101, No. 3, 499–519 (1961).Google Scholar
  4. 4.
    G. B. Folland and I. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, Princeton (1982). (Math. Notes,28).Google Scholar
  5. 5.
    P. Pansu, “Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un,” Ann. of Math.,129, 1–60 (1989).Google Scholar
  6. 6.
    L. Hörmander, “Hypoelliptic second order differential equations,” Acta Math.,119, 147–171 (1967).Google Scholar
  7. 7.
    R. Coifman and G. Weiss, Analyse Harmonique Non-Commutative sur Certain Espaces Homogenes, Springer, Berlin etc. (1971). (Lecture Notes in Math.;242).Google Scholar
  8. 8.
    R. Macías and C. Segovia, “Lipschitz functions on spaces of homogeneous type,” Adv. in Math.,33, No. 3, 257–270 (1979).CrossRefGoogle Scholar
  9. 9.
    S. K. Vodop'yanov, “Analysis on Carnot groups and quasiregular mappings,” in: Abstracts: International Conference on Groups in Analysis and Geometry (Omsk, August, 1995), Omsk, 1995, pp. 18–21.Google Scholar
  10. 10.
    S. K. Vodop'yanov, “Analysis on Carnot groups and quasiconformal mappings,” in: Abstracts: Ann Arbor Analysis Workshop (Ann Arbor, August, 1995), University of Michigan, Ann Arbor, 1995, pp. 5–6.Google Scholar
  11. 11.
    D. Jerison, “The Poincaré inequality for vector fields satisfying Hörmander's condition,” Duke Math. J.,53, No. 2, 503–523 (1986).CrossRefGoogle Scholar
  12. 12.
    G. Lu, “Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications,” Rev. Mat. Iberoamericana,8, No. 3, 367–439 (1992).Google Scholar
  13. 13.
    G. Lu, “The sharp Poincaré inequality for free vector fields: An endpoint result,” Rev. Mat. Iberoamericana,10, No. 3, 453–466 (1994).Google Scholar
  14. 14.
    S. K. Vodop'yanov and A. D. Ukhlov, “Weakly contact transformations and change of variables on nilpotent groups,” Dokl. Akad. Nauk,341, No. 4, 439–441 (1995).Google Scholar
  15. 15.
    S. K. Vodop'yanov and A. D. Ukhlov, “Approximately differentiable transformations and change of variables on nilpotent groups,” Sibirsk. Mat. Zh.,37, No. 1, 70–89 (1996).Google Scholar
  16. 16.
    B. Bojarski and P. Hajlasz, “Pointwise inequalities for Sobolev functions and some applications,” Studia Math.,106, 77–92 (1993).Google Scholar
  17. 17.
    S. K. Vodop'yanov, “Analysis on Carnot groups,” in: Abstracts: International Conference on Function Spaces, Approximation Theory, and Nonlinear Analysis (Moscow, April, 27–May,3, 1995), PAIMS, Moscow, 1995, pp. 83–84.Google Scholar
  18. 18.
    S. K. Vodop'yanov, “Analysis on Carnot groups and quasiconformal mappings,” in: Abstracts: International Conference on Function Theory and Its Applications (Kazan', June, 1995), Kazan', 1995, pp. 12–13.Google Scholar
  19. 19.
    J. Manfredi, “Weakly monotone functions,” J. Geom. Anal.,4, No. 2, 393–402 (1994).Google Scholar
  20. 20.
    S. K. Vodop'yanov and V. M. Chernikov, “Sobolev spaces and hypoelliptic equations,” in: Trudy Inst. Mat. (Novosibirsk), Novosibirsk, 1995,29, pp. 7–62.Google Scholar
  21. 21.
    S. K. Vodop'yanov, “Potential theory on homogeneous groups,” Mat. Sb.,180, No. 1, 57–78 (1989).Google Scholar
  22. 22.
    S. K. Vodop'yanov, “WeightedL p-potential theory on homogeneous groups,” Sibirsk. Mat. Zh.,33, No. 2, 29–48 (1992).Google Scholar
  23. 23.
    S. K. Vodop'yanov, “Weighted Sobolev spaces and boundary behavior of solutions to degenerate hypoelliptic equations,” Sibirsk. Mat. Zh.,36, No. 2, 278–300 (1995).Google Scholar
  24. 24.
    V. M. Gol'dshtein and Yu. G. Reshetnyak, Quasiconformal Mappings and Sobolev Spaces, Kluwer Academic Publishers, Dordrecht (1990).Google Scholar
  25. 25.
    Yu. G. Reshetnyak, “Some geometric properties of functions and mappings with generalized derivatives,” Sibirsk. Mat. Zh.,7, No. 5, 886–919 (1966).Google Scholar
  26. 26.
    O. Martio and J. Malý, “Lusin's condition (N) and mappings of the classW 1,n,” J. Reine Angew. Math.,485, 19–36 (1995).Google Scholar
  27. 27.
    S. K. Vodop'yanov and V. M. Gol'dshtein, “Quasiconformal mappings and function spaces with generalized first derivatives,” Sibirsk. Mat. Zh.,17, No. 3, 515–531 (1976).Google Scholar
  28. 28.
    V. šverák, “Regularity properties of deformations with finite energy,” Arch. Rat. Mech. Anal.,100, No. 2, 105–127 (1988).Google Scholar
  29. 29.
    Yu. G. Reshetnyak, Space Mappings with Bounded Distortion [in Russian], Nauka, Novosibirsk (1982).Google Scholar
  30. 30.
    S. K. Vodop'yanov, “Quasiconformal mappings on Carnot groups,” Dokl. Akad. Nauk,347, No. 4, 439–442 (1996).Google Scholar
  31. 31.
    S. K. Vodop'yanov, The Taylor formula and Function Spaces [in Russian], Novosibirsk Univ., Novosibirsk (1988).Google Scholar
  32. 32.
    S. K. Vodop'yanov, “Mappings of homogeneous groups and embeddings of function spaces,” Sibirsk. Mat. Zh.,30, No. 5, 25–41 (1989).Google Scholar
  33. 33.
    A. Koranyi and H. M. Reimann, “Foundations for the theory of quasiconformal mappings on the Heisenberg group,” Adv. in Math.,111, 1–87 (1995).CrossRefGoogle Scholar
  34. 34.
    J. Heinonen, “Calculus on Carnot groups,” in: Fall School in Analysis (JavÄskylÄ, 1994), JavÄskylÄ, University of JavÄskylÄ, 1994, pp. 1–32.Google Scholar
  35. 35.
    S. K. Vodop'yanov and A. V. Greshnov, “Analytic properties of quasiconformal mappings on Carnot groups,” Sibirsk. Mat. Zh.,36, No. 6, 1317–1327 (1995).Google Scholar
  36. 36.
    H. M. Reimann, “An estimate for pseudoconformal capacities on the sphere,” Ann. Acad. Sci. Fenn. Ser. A I Math.,14, No. 2, 315–324 (1989).Google Scholar
  37. 37.
    S. K. Vodop'yanov, “L p-potential theory and quasiconformal mappings on homogeneous groups,” in: Contemporary Problems on Geometry and Analysis [in Russian], Nauka, Novosibirsk, 1989, pp. 45–89.Google Scholar
  38. 38.
    S. K. Vodop'yanov and V. M. Gol'dshtein, “Lattice isomorphisms of the spacesW n1 and quasiconformal mappings,” Sibirsk. Mat. Zh.,16, No. 2, 224–246 (1975).Google Scholar
  39. 39.
    S. K. Vodop'yanov and V. M. Gol'dshtein, “Criteria for the removability of sets in spaces ofL p1 quasiconformal and quasi-isometric mappings,” Sibirsk. Mat. Zh.,18, No. 1, 48–68 (1977).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • S. K. Vodop'yanov
    • 1
  1. 1.Novosibirsk

Personalised recommendations