Advertisement

Siberian Mathematical Journal

, Volume 37, Issue 6, pp 1086–1100 | Cite as

Linear groups containing a root subgroup

  • E. L. Bashkirov
Article

Keywords

Linear Group Root Subgroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. I. Merzlyakov, “Linear groups,” in: Algebra. Topology. Geometry [in Russian], VINITI, Moscow, 1970, pp. 75–110 (Itogi Nauki i Tekhniki).Google Scholar
  2. 2.
    A. E. Zalesskii, “Linear groups,” Uspekhi Mat. Nauk,36, No. 5, 56–107 (1981).Google Scholar
  3. 3.
    A. E. Zalesskii, “Linear groups,” in: Algebra. Topology. Geometry [in Russian], VINITI, Moscow, 1983, pp. 135–182 (Itogi Nauki i Tekhniki).Google Scholar
  4. 4.
    E. L. Bashkirov, “On subgroups of the groupSL2(K) over an infinite fieldK,” submitted to VINITI on November 19, 1984, No. 7369.Google Scholar
  5. 5.
    E. L. Bashkirov, “On certain subgroups of the special linear group over a field,” Izv. Akad. Nauk SSSR Ser. Fiz. Mat., No. 1, 31–35 (1991).Google Scholar
  6. 6.
    E. L. Bashkirov, “On linear groups containing a subgroup of root type,” in: Abstracts: The 19th All-Union Algebraic Conference, L'vov, 1987.Google Scholar
  7. 7.
    McLaughlin, “Some groups generated by transvections,” Arch. Math.,18, No. 4, 364–368 (1967).CrossRefGoogle Scholar
  8. 8.
    A. E. Zalesskii and V. N. Serëzhkin, “Linear groups generated by transvections,” Izv. Akad. Nauk SSSR Ser. Mat.,40, No. 1, 26–49 (1976).Google Scholar
  9. 9.
    E. L. Bashkirov, “On linear groups containing the groupSp n(k) over a field of characteristic 2,” Izv. Akad. Nauk Belorus. SSR Ser. Fiz. Mat., No. 4, 21–20 (1991).Google Scholar
  10. 10.
    E. L. Bashkirov, “On linear groups containing the commutator subgroup of an orthogonal group of index greater than 1,” Sibirsk. Mat. Zh.,33, No. 5, 15–22 (1992).Google Scholar
  11. 11.
    E. L. Bashkirov, “On linear groups generated by two long root subgroups,” Sibirsk. Mat. Zh.,34, No. 2, 15–23 (1993).Google Scholar
  12. 12.
    D. Gorenstein, Finite Groups, Harper and Row, New York (1968).Google Scholar
  13. 13.
    V. M. Levchuk, “On generating sets of root elements of Chevalley groups over a field,” Algebra i Logika,22, No. 5, 504–517 (1983).Google Scholar
  14. 14.
    A. N. Nuzhin, “On groups intermediate between groups oi Lie-type over different fields,” Algebra i Logika,22, No. 5, 526–541 (1983).Google Scholar
  15. 15.
    Z. I. Borevich, “On subgroups of linear groups which are full of transvections,” Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI),75, 22–31 (1978).Google Scholar
  16. 16.
    N. S. Romanovskii, “Subgroups which lie between the special linear groups over a ring and its subring,” Mat. Zametki,6, No. 3, 335–345 (1969).Google Scholar
  17. 17.
    O. King, “On subgroups of the special linear groups containing the special unitary group,” Geom. Dedicata,19, 297–310 (1985).CrossRefGoogle Scholar
  18. 18.
    E. L. Bashkirov, “On linear groups containing the special unitary group of nonzero index,” submitted to VINITI on April 7, 1986, No. 2616.Google Scholar
  19. 19.
    Li Shangzhi, “Maximal subgroups in classical groups over arbitrary fields,” in: The Arcata Conference on Representations of Finite Groups, Amer. Math. Soc., Providence, 1987, pp. 487–494. (Proc. Sympos. Pure Math.,47, Part 2.)Google Scholar
  20. 20.
    R. N. Dye, “Maximal subgroups ofGL 2n (K),SL 2n (K),PGL 2n (K) andPSL 2n (K) associated with symplectic polarities,” J. Algebra,66, No. 1, 1–11 (1980).CrossRefGoogle Scholar
  21. 21.
    A. I. Shkuratskii, “On subgroups of the symplectic group over an algebraically closed field,” Algebra i Logika,22, No. 4, 466–473 (1983).Google Scholar
  22. 22.
    D. A. Suprunenko, Matrix Groups [in Russian], Nauka, Moscow (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • E. L. Bashkirov
    • 1
  1. 1.Minsk

Personalised recommendations