Siberian Mathematical Journal

, Volume 35, Issue 1, pp 202–207 | Cite as

On finitep-groups not satisfying the hughes conjecture

  • E. I. Khukhro


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. R. Hughes, “A problem in group theory,” Bull. Amer. Math. Soc.,63, No. 3, 209 (1957).Google Scholar
  2. 2.
    D. R. Hughes and J. G. Thompson, “TheH p-problem and the structure ofH p-groups,” Pacific J. Math.,9, 1097–1101 (1959).Google Scholar
  3. 3.
    G. E. Wall, “On Hughes'H p-problem,” in: Abstracts: Proc. International Conference on the Theory of Groups (Canberra, 1965), Gordon and Breach, New York, 1967, pp. 357–362.Google Scholar
  4. 4.
    G. E. Wall, “On the Lie ring of a group of prime exponent,” in: Abstracts: Proc. Second International Conference on the Theory of Groups (Canberra, 1973), Springer, Berlin, 1974, pp. 667–690 (Lecture Notes in Math.,372).Google Scholar
  5. 5.
    J. J. Cannon, “Some combinatorial and symbol manipulation programs in group theory,” in: Computational Problems in Abstract Algebra (Proc. Conference, Oxford, 1967), Pergamon Press, London, 1970, pp. 199–203.Google Scholar
  6. 6.
    E. I. Khukhro, “On a connection between the Hughes conjecture and relations in finite groups of prime exponent,” Mat. Sb.,116, No. 2, 253–264 (1981).Google Scholar
  7. 7.
    E. I. Khukhro, “On the associated Lie ring of a free 2-generator group of prime exponent and the Hughes conjecture for 2-generatorp-groups,” Mat. Sb.,118, No. 4, 567–575 (1982).Google Scholar
  8. 8.
    G. E. Wall, “On the multilinear identities which hold in the Lie ring of a group of prime-power exponent,” J. Algebra,104, No. 1, 1–22 (1986).Google Scholar
  9. 9.
    M. R. Vaughan-Lee, “The restricted Burnside problem,” Bull. London Math. Soc,17, No. 2, 113–133 (1985).Google Scholar
  10. 10.
    E. I. Khukhro, “On the Hughes problem for finitep-groups,” Algebra i Logika,26, No. 5, 642–646 (1987).Google Scholar
  11. 11.
    E. I. Khukhro, “Locally nilpotent groups admitting a splitting automorphism of prime order,” Mat. Sb.,130, No. 1, 120–127 (1986).Google Scholar
  12. 12.
    A. I. Kostrikin, “On the problem of Burnside,” Izv. Akad. Nauk SSSR Ser. Mat.,23, No. 1, 3–34 (1959).Google Scholar
  13. 13.
    E. I. Khukhro, “Local nilpotency in varieties of groups with operators,” Mat. Sb.,184, No. 3, 137–160 (1993).Google Scholar
  14. 14.
    E. I. Khukhro, “On the structure of finitep-groups admitting a partition,” Sibirsk. Mat. Zh.,30, No. 6, 208–218 (1989).Google Scholar
  15. 15.
    E. I. Khukhro, Nilpotent Groups and Their Automorphisms, de Gruyter, Berlin (1993).Google Scholar
  16. 16.
    A. I. Kostrikin, “On connection between periodic groups and Lie rings,” Izv. Akad. Nauk SSSR Ser. Mat.,21, 289–310 (1957).Google Scholar
  17. 17.
    G. Havas, G. E. Wall, and J. W. Wamsley, “The two generator restricted Burnside group of exponent five,” Bull. Austral. Math. Soc,10, 459–470 (1974).Google Scholar
  18. 18.
    D. R. Hughes, “Partial difference sets,” Amer. J. Math.,78, 650–674 (1956).Google Scholar
  19. 19.
    E. G. Straus and G. Szekeres, “On a problem of D. R. Hughes,” Proc. Amer. Math. Soc,9, 157–158 (1958).Google Scholar
  20. 20.
    G. Higman, “On finite groups of exponent five,” Proc. Cambridge Philos. Soc.,52, 381–390 (1956).Google Scholar
  21. 21.
    G. Havas, M. F. Newman, and M. Vaughan-Lee, “A nilpotent quotient algorithm for graded Lie rings. Computation group theory. I,” J. Symbolic Comput.,9, No. 5/6, 653–664 (1990).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • E. I. Khukhro
    • 1
  1. 1.Novosibirsk

Personalised recommendations