Advertisement

Siberian Mathematical Journal

, Volume 35, Issue 1, pp 178–188 | Cite as

On sublinear functionals defined on the space of bochner integrable functions

  • A. A. Tolstonogov
  • V. V. Goncharov
Article

Keywords

Integrable Function Bochner Integrable Function Sublinear Functional 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Tolstonogov, “On certain properties of spaces of sublinear functionals,” Sibirsk. Mat. Zh.,18, No. 2, 429–443 (1977).Google Scholar
  2. 2.
    S. S. Kutateladze and A. M. Rubinov, “Minkowski Duality and Its Applications,” Uspekhi Mat. Nauk,27, No. 3, 128–176 (1972).Google Scholar
  3. 3.
    V. L. Levin, Convex Analysis in Spaces of Measurable Functions and Its Application in Mathematics and Economics [in Russian], Nauka, Moscow (1985).Google Scholar
  4. 4.
    R. D. Edwards, Functional Analysis. Theory and Applications [Russian translation], Mir, Moscow (1969).Google Scholar
  5. 5.
    E. A. Michael, “Continuous selections. I,” Ann. of Math.,63, 361–382 (1956).Google Scholar
  6. 6.
    P. R. Halmos, Measure Theory [Russian translation], Izdat. Inostr. Lit., Moscow (1953).Google Scholar
  7. 7.
    C. J. Himmelberg, “Measurable relations,” Fund. Math.,87, No. 1, 53–72 (1975).Google Scholar
  8. 8.
    F. Hiai and H. Umegaki, “Integrals, conditional expectations, and martingales of multivalued functions,” J. Multivariate Anal.,7, No. 1, 149–182 (1977).Google Scholar
  9. 9.
    N. S. Papageorgiou, “On the theory of Banach space valued multifunctions. I. Integration and conditional expectation,” J. Multivariate Anal.,17, No. 2, 185–206 (1985).Google Scholar
  10. 10.
    A. D. Ioffe and V. M. Tikhomirov, The Theory of Extremal Problems [in Russian], Nauka, Moscow (1974).Google Scholar
  11. 11.
    A. G. Pinsker, “The space of convex sets in a locally convex space,” in: Certain Classes of Partially Ordered Spaces [in Russian], Izdat. Leningr. Univ., Leningrad, 1966, pp. 13–17.Google Scholar
  12. 12.
    M. Berger, Geometry. Vol. 1 [Russian translation], Mir, Moscow (1984).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • A. A. Tolstonogov
    • 1
  • V. V. Goncharov
    • 1
  1. 1.Irkutsk

Personalised recommendations