Siberian Mathematical Journal

, Volume 35, Issue 1, pp 150–154 | Cite as

Simply connected compact five-dimensional homogeneous Einstein manifolds

  • E. D. Rodionov


Einstein Manifold Homogeneous Einstein Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. L. Besse, Einstein Manifolds. Vol. I, II [Russian translation], Mir, Moscow (1990).Google Scholar
  2. 2.
    Sh. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vol. I, II [Russian translation], Nauka, Moscow (1981).Google Scholar
  3. 3.
    H.-C. Wang, “Two-point homogeneous spaces,” Ann. of Math.,55, 177–191 (1952).Google Scholar
  4. 4.
    G. R. Jensen, “Einstein metrics on principal fibre bundles,” J. Differential Geom.,8, 599–614 (1973).Google Scholar
  5. 5.
    L. B. Bergery, “Les variétés riemanniennes homogènes simplement connexes de dimension impaire a courbure strictement positive,” J. Math. Pures Appl.,55, No. 1, 47–67 (1976).Google Scholar
  6. 6.
    E. Cartan, Geometry of Lie Groups and Symmetric Spaces [Russian translation], Izdat. Inostr. Lit., Moscow (1949).Google Scholar
  7. 7.
    O. V. Manturov, “Homogeneous Rimannian manifolds with irreducible isotropy group,” in: Trudy Sem. Vektor. Tenzor. Anal. [in Russian], Moscow Univ., Moscow, 1966,13, pp. 68–145.Google Scholar
  8. 8.
    J. A. Wolf, “The geometry and structure of isotropy irreducible homogeneous spaces,” Acta Math.,120, 59–148 (1968).Google Scholar
  9. 9.
    E. D. Rodionov, “Einstein metrics on a class of five-dimensional homogeneous spaces,” Comment. Math. Univ. Carolin.,32, NO. 2, 389–393 (1991).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • E. D. Rodionov
    • 1
  1. 1.Barnaul

Personalised recommendations