Advertisement

Siberian Mathematical Journal

, Volume 35, Issue 1, pp 123–149 | Cite as

Generalized solutions with first-order derivatives inL p to the flow problem for the stokes system

  • V. N. Maslennikova
  • M. A. Timoshin
Article
  • 25 Downloads

Keywords

Generalize Solution Flow Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. N. Maslennikova and M. A. Timoshin, “To theL p-theory of the flow problem for the Stokes system,” in: Application of New Methods of Analysis to Differential Equations [in Russian], Voronezh Univ., Voronezh, 1989, pp. 63–77.Google Scholar
  2. 2.
    M. A. Timoshin, “On the dimension of the kernel of the differential operator in the first boundary value problem for the Stokes system inL p-spaces in the case of unbounded domains with compact boundary,” in: Boundary Value Problems and Spaces of Differentiable Functions [in Russian], Izdat. Univ. Druzhby Narodov, Moscow, 1989, pp. 124–147.Google Scholar
  3. 3.
    V. N. Maslennikova and M. A. Timoshin, “OnL p-theory for the Stokes problem in unbounded domains with compact boundary,” Dokl. Akad. Nauk SSSR,313, No. 6, 1341–1345 (1990).Google Scholar
  4. 4.
    G. P. Galdi and C. G. Simader, “Existence, uniqueness andL q-estimates for the Stokes problem in an exterior domain,” Arch. Rational Mech. Anal.,112, 291–318 (1990).Google Scholar
  5. 5.
    V. N. Maslennikova and M. E. Bogovskii, “Density of compactly-supported solenoidal vector fields,” Sibirsk. Mat. Zh.,19, No. 5, 1092–1108 (1978).Google Scholar
  6. 6.
    G. de Rham, Differentiable Manifolds [Russian translation], Izdat. Inostr. Lit., Moscow (1956).Google Scholar
  7. 7.
    R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis [Russian translation], Mir, Moscow (1981).Google Scholar
  8. 8.
    M. E. Bogovskii, “Solution of some vector analysis problems connected with the operators div and grad,” in: The Theory of Cubature Formulas and Applications of Functional Analysis to Equations of Mathematical Physics [in Russian], Inst. Mat. (Novosibirsk), Novosibirsk, No. 1, 1980, pp. 5–40.Google Scholar
  9. 9.
    N. Dunford and J. T. Schwartz, Linear Operators. Vol. 1: General Theory [Russian translation], Izdat. Inostr. Lit., Moscow (1962).Google Scholar
  10. 10.
    G. Lamb, Hydrodynamics [Russian translation], Gostekhizdat, Moscow (1947).Google Scholar
  11. 11.
    J. G. Heywood, “On uniqueness questions in the theory of viscous flow,” Acta Math.,136, No. 1, 61–102 (1976).Google Scholar
  12. 12.
    N. E. Kochin, I. A. Kibel', and N. V. Roze, Theoretical Hydrodynamics. Vol. 2 [in Russian], Fizmatgiz, Moscow (1962).Google Scholar
  13. 13.
    E. Stein and G. Weiss, Introduction to Harmonic Analysis on Euclidean Spaces [Russian translation], Mir, Moscow (1974).Google Scholar
  14. 14.
    W. Rudin, Functional Analysis [Russian translation], Mir, Moscow (1975).Google Scholar
  15. 15.
    V. N. Maslennikova and M. E. Bogovskii, “Approximation of potential and solenoidal vector fields,” Sibirsk. Mat. Zh.,24, No. 5, 149–171 (1983).Google Scholar
  16. 16.
    V. N. Maslennikova and M. E. Bogovskii, “Approximation of solenoidal and potential vector fields in Sobolev spaces and problems of mathematical physics,” in: Partial Differential Equations [in Russian], Nauka, Novosibirsk, 1986, pp. 129–137.Google Scholar
  17. 17.
    M. E. Bogovskii, OnLp-Theory for the Navier-Stokes System in Unbounded Domains with Non-compact Boundary [in Russian], Diss. Kand. Fiz.-Mat. Nauk, Moscow (1984).Google Scholar
  18. 18.
    V. I. Burenkov, Function Spaces.L p-Spaces [in Russian], Izdat. Univ. Druzhby Narodov, Moscow (1987).Google Scholar
  19. 19.
    L. Cattabriga, “Su un problema al contorno relativo al sistema di equazioni di Stokes,” Rend. Sem. Math. Univ. Padova, No. 31, 308–340 (1961).Google Scholar
  20. 20.
    S. L. Sobolev, “Density of compactly-supported functions in the spaceL p(m) (E n),” Sibirsk. Mat. Zh.,4, No. 3, 673–682 (1963).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • V. N. Maslennikova
    • 1
  • M. A. Timoshin
    • 1
  1. 1.Moscow

Personalised recommendations