Siberian Mathematical Journal

, Volume 35, Issue 1, pp 114–122 | Cite as

Boolean-valued analysis andJB-algebras

  • A. G. Kusraev


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Takeuti, “Von Neumann algebras and Boolean valued analysis,” J. Math. Soc. Japan,35, No. 1, 1–21 (1983).Google Scholar
  2. 2.
    G. Takeuti, “C *-algebras and Boolean valued analysis,” Japan. J. Math.,9, No. 2, 207–245 (1983).Google Scholar
  3. 3.
    M. Ozawa, “Boolean valued interpretation of Hilbert space theory,” J. Math. Soc. Japan,35, No. 4, 609–627 (1983).Google Scholar
  4. 4.
    M. Ozawa, “A classification of type IAW *-algebras and Boolean valued analysis,” J. Math. Soc. Japan,36, No. 4, 589–608 (1984).Google Scholar
  5. 5.
    M. Ozawa, “Boolean valued analysis approach to the trace problem ofAW *-algebras,” J. London Math. Soc.,33, No. 2, 347–354 (1986).Google Scholar
  6. 6.
    M. Ozawa, “Boolean valued interpretation of Banach space theory and module structures of von Neumann algebras,” Nagoya Math. J.,117, 1–36 (1990).Google Scholar
  7. 7.
    A. G. Kusraev, “On functional realization of type 1AW *-algebras,” Sibirsk. Mat. Zh.,32, No. 3, 79–88 (1991).Google Scholar
  8. 8.
    A. G. Kusraev and S. S. Kutateladze, “Nonstandard methods in geometric functional analysis,” in: Abstracts: Second All-Union School on Algebra and Analysis (Tomsk, 1989) [in Russian], Tomsk, 1989, pp. 140–165.Google Scholar
  9. 9.
    P. Jordan, J. von Neumann, and E. Wigner, “On an algebraic generalization of the quantum mechanic formalism,” Ann. Math.,35, 29–64 (1944).Google Scholar
  10. 10.
    E. M. Alfsen, F. W. Shultz, and E. Störmer, “A Gel'fand-Neumark theorem for Jordan algebras,” Adv. Math.,28, No. 1, 11–56 (1978).Google Scholar
  11. 11.
    H. Hanshe-Olsen and E. Störmer, Jordan Operator Algebras, Pitman Publ. Inc., Boston (1984).Google Scholar
  12. 12.
    Sh. A. Ayupov, “Jordan operator algebras,” in: Sovrem. Probl. Mat. Fund. Naprav.,27, VINITI, Moscow, 1985, pp. 67–97.Google Scholar
  13. 13.
    Sh. A. Ayupov, Classification and Representation of Ordered Jordan Algebras [in Russian], Fan, Tashkent (1986).Google Scholar
  14. 14.
    F. W. Shultz, “On normed Jordan algebras which are Banach dual spaces,” J. Funct. Anal.,31, No. 3, 360–376 (1979).Google Scholar
  15. 15.
    A. G. Kusraev and S. S. Kutateladze, Nonstandard Methods of Analysis [in Russian], Nauka, Novosibirsk (1990).Google Scholar
  16. 16.
    A. G. Kusraev, “Linear operators in lattice-normed spaces,” in: Studies on Geometry in the Large and Mathematical Analysis. Vol. 9 [in Russian], Inst. Mat. (Novosibirsk), Novosibirsk, 1987, pp. 84–123.Google Scholar
  17. 17.
    A. G. Kusraev, Vector Duality and Its Applications [in Russian], Nauka, Novosibirsk (1985).Google Scholar
  18. 18.
    V. A. Lyubetskii and E. I. Gordon, “Boolean extensions of uniform structures,” in: Studies on Nonclassical Logics and Formal Systems [in Russian], Nauka, Moscow, 1983, pp. 82–153.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • A. G. Kusraev
    • 1
  1. 1.Novosibirsk

Personalised recommendations