Siberian Mathematical Journal

, Volume 35, Issue 1, pp 77–87 | Cite as

Nonstandard hulls of vector lattices

  • é. Yu. Emel'yanov


Vector Lattice Nonstandard Hull 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. A. J. Luxemburg, “A general theory of monads,” in: Abstracts: Applications of Model Theory to Algebra, Analysis, and Probability (International Symposium, Pasadena, Calif., 1967), Holt, Rinehart, and Winston, New York, 1969, pp. 18–86.Google Scholar
  2. 2.
    C. W. Henson and L. C. Moore, “Nonstandard analysis and the theory of Banach spaces,” in: Nonstandard Analysis: Recent Developments (Lecture Notes in Math.,983), 1983, pp. 27–112.Google Scholar
  3. 3.
    P. A. Loeb, “Conversion from nonstandard to standard measure spaces and applications in probability theory,” Trans. Amer. Math. Soc.,211, 113–122 (1975).Google Scholar
  4. 4.
    S. Albeverio, J. F. Fenstad, R. J. Höegh-Krohn, and T. L. Lindström, Nonstandard Methods in Stochastic Analysis and Mathematical Physics [Russian translation], Mir, Moscow (1990).Google Scholar
  5. 5.
    K. D. Stroyan and W. A. J. Luxemburg, Introduction to the Theory of Infinitesimals, Acad. Press, New York (1976).Google Scholar
  6. 6.
    M. Davis, Applied Nonstandard Analysis [Russian translation], Mir, Moscow (1980).Google Scholar
  7. 7.
    W. A. J. Luxemburg and A. C. Zaanen, Riesz Spaces. Vol. 1, North Holland, Amsterdam (1971).Google Scholar
  8. 8.
    K. Yosida and M. Fukamiya, “On vector lattice with a unit. II,” Proc. Imp. Acad. Tokyo,17, 479–482 (1941/1942).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • é. Yu. Emel'yanov
    • 1
  1. 1.Novosibirsk

Personalised recommendations