Advertisement

Siberian Mathematical Journal

, Volume 35, Issue 1, pp 21–36 | Cite as

Estimates for constants in additivity inequalities for function spaces

  • V. I. Burenkov
  • A. Senusi
Article
  • 20 Downloads

Keywords

Function Space Additivity Inequality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. M. Nikol'skii, “On a certain property of the classesH pl,” Ann. Univ. Sci. Budapest, No. 3/4, 205–216 (1960/1961).Google Scholar
  2. 2.
    V. I. Burenkov, “Local lemmas for certain classes of differentiable functions,” Trudy Mat. Inst. Steklov. Akad. Nauk SSSR,77, 65–71 (1965).Google Scholar
  3. 3.
    V. I. Burenkov, “Additivity of the spacesW pl(Ω) andB pl(Ω), and embedding theorems for domains of general type,” Trudy Mat. Inst. Steklov. Akad. Nauk SSSR,105, 30–45 (1969).Google Scholar
  4. 4.
    V. I. Burenkov, “Additivity of the classesW pl(Ω),” Trudy Mat. Inst. Steklov. Akad. Nauk SSSR,89, 31–55 (1967).Google Scholar
  5. 5.
    V. I. Burenkov, “Additivity of the spacesW pl(Ω)” in: Embedding Theorems and Their Applications, Nauka, Moscow, 1970, pp. 47–52.Google Scholar
  6. 6.
    Yu. V. Kuznetsov, “Certain inequalities for fractional seminorms,” Trudy Mat. Inst. Steklov. Akad. Nauk SSSR,131, 147–157 (1974).Google Scholar
  7. 7.
    Yu. V. Kuznetsov, “On a certain property of the spacesW pl(Ω) andW p,θl,” in: Applications of the Methods of Functional Analysis and Computational Mathematics [in Russian], Novosibirsk (1975).Google Scholar
  8. 8.
    A. Ya. Rutitskaya, “Additivity of general function spaces,” submitted to VINITI, 1985, Voronezh. Lesotekhn. Inst., Voronezh, 1985, No. 1800–85.Google Scholar
  9. 9.
    A. Ya. Rutitskaya, Properties of Function Spaces over Domains with Nonsmooth Boundary and Their Applications, Diss. Kand. Fiz.-Mat. Nauk, Voronezh (1990).Google Scholar
  10. 10.
    V. I. Burenkov, “Certain properties of the classesW pl(Ω) andW pl,l for 0<l<1,” Trudy Mat. Inst. Steklov. Akad. Nauk SSSR,77, 72–88 (1965).Google Scholar
  11. 11.
    O. V. Besov and V. P. Il'in, “A natural extension of the class of domains in embedding theorems,” Mat. Sb.,75, No. 4, 483–495 (1968).Google Scholar
  12. 12.
    S. V. Uspenskii, G. V. Demidenko, and V. G. PerepËlkin, Embedding Theorems and Applications to Differential Equations [in Russian], Nauka, Novosibirsk (1984).Google Scholar
  13. 13.
    L. N. Slobodetskii, “Sobolev spaces of fractional order and their application to boundary value problems for partial differential equations,” Dokl. Akad. Nauk SSSR,118, No. 2, 243–246 (1958).Google Scholar
  14. 14.
    L. N. Slobodetskii, “Generalized Sobolev spaces and their application to boundary value problems for partial differential equations,” Uchen. Zap. Leningrad. Ped. Inst.,197, 54–112 (1958).Google Scholar
  15. 15.
    O. V. Besov, V. P. Il'in, and S. M. Nikol'skii, Integral Representations of Functions and Embedding Theorems [in Russian], Nauka, Moscow (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • V. I. Burenkov
    • 1
  • A. Senusi
    • 1
  1. 1.Moscow

Personalised recommendations