Advertisement

Siberian Mathematical Journal

, Volume 35, Issue 1, pp 9–20 | Cite as

Rotational discontinuity in magnetohydrodynamics with anisotropic pressure. I

  • A. M. Blokhin
  • Yu. L. Trakhinin
Article

Keywords

Anisotropic Pressure Rotational Discontinuity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. M. Blokhin and D. A. Krymskikh, “Symmetrization of equations in magnetohydrodynamics with anisotropic pressure,” in: Boundary Value Problems for Partial Differential Equations [in Russian], Inst. Mat. (Novosibirsk), Novosibirsk, 1990, pp. 3–19.Google Scholar
  2. 2.
    A. M. Blokhin and D. A. Krymskikh, “Statement of stability problems for shock waves in magnetohydrodynamics with anisotropic pressure,” in: Some Applications of Functional Analysis to Equations of Mathematical Physics [in Russian], Inst. Mat. (Novosibirsk), Novosibirsk, 1990, pp. 3–30.Google Scholar
  3. 3.
    A. M. Blokhin and Yu. L. Trakhinin, “On stability of shock waves in magnetohydrodynamics with anisotropic pressure,” Sibirsk. Mat. Zh.,34, No. 6, 10–22 (1993).Google Scholar
  4. 4.
    A. M. Blokhin and Yu. L. Trakhinin, “Rotational discontinuity in magnetohydrodynamics,” Sibirsk. Mat. Zh.,34, No. 3, 3–18 (1993).Google Scholar
  5. 5.
    G. F. Chew, M. L. Goldberger, and F. E. Low, “The Boltzmann equation and the one-fluid hydromagnetic equations in the absence of particle collisions,” Proc. Roy. Soc. London Ser. A,236, No. 1204, 112–118 (1956).Google Scholar
  6. 6.
    V. B. Baranov and K. V. Krasnobaev, Hydrodynamic Theory of a Cosmic Plasma [in Russian], Nauka, Moscow (1977).Google Scholar
  7. 7.
    M. D. Kartalev, “On the Zemplen's theorem for shock waves in a plasma with anisotropic pressure,” Dokl. Akad. Nauk SSSR,205, No. 6, 1316–1319 (1972).Google Scholar
  8. 8.
    S. K. Godunov, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1979).Google Scholar
  9. 9.
    V. Yu. Zakharov, “Possibility of rarefaction shocks in anisotropic plasma,” Izv. Akad. Nauk SSSR Ser. Mekh. Zhidk. Gaza, No. 4, 161–164 (1989).Google Scholar
  10. 10.
    L. D. Landau and E. M. Lifshits, Electrodynamics of Continuous Media [in Russian], Nauka, Moscow (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • A. M. Blokhin
    • 1
  • Yu. L. Trakhinin
    • 1
  1. 1.Novosibirsk

Personalised recommendations