Skip to main content
Log in

Čech cocycles for characteristic classes

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We give general formulae for explicit Čech cocycles representing characteristic classes of real and complex vector bundles, as well as for cocycles representing Chern-Simons classes of bundles with arbitrary connections. Our formulae involve integrating differential forms over moving simplices inside homogeneous spaces. An important feature of our cocycles is that they take integer values (as opposed to real or rational values). We find in particular a formula for the instanton number of a connection over a closed four-manifold with arbitrary structure group. For flat connections, our formulae recover and generalize those of Cheeger and Simons. The methods of this paper apply also to the purely geometric construction of the Quillen line bundle with its metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beilinson, A.: Higher regulators and values of L-functions. J. Sov. Math.30, 2036–2070 (1985)

    Google Scholar 

  2. Beresin, F.A., Retakh, V.S.: A method of computing characteristic classes of vector bundles. Rep. Math. Phys.18, 363–378 (1980)

    Google Scholar 

  3. Borel, A.: Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts. Ann. Math. (2)57, 115–207 (1953)

    Google Scholar 

  4. Borel, A., Hirzebruch, F.: Characteristic classes and homogeneous spaces 2. Am. J. Math.81, 315–382 (1959)

    Google Scholar 

  5. Bott, R., Tu, L.: “Differential forms in algebraic topology”. Berlin, Heidelberg, New York: Springer, 1982

    Google Scholar 

  6. Brylinski, J.-L., McLaughlin, D.A.: A geometric construction of the first Pontryagin class. In: Quantum Topology, Series on Knots and Everything. L. Kauffman, R. Baadhio, (eds.) Singapore: World Scientific, 1993, pp. 209–220

    Google Scholar 

  7. Brylinski, J.-L., McLaughlin, D.A.: Holomorphic quantization and unitary representations of the Teichmüller group. In: Lie Theory and Geometry: In honor of Bertram Kostant, Progress in Math., Birkhaüser, vol.123, 1994, pp. 21–64

  8. Brylinski, J.-L., McLaughlin, D.A.: The geometry of degree 4 characteristic classes and of line bundles on loop spaces I. Duke Math. J.75, 603–638 (1994)

    Google Scholar 

  9. Brylinski, J.-L., McLaughlin, D.A.: The geometry of degree 4 characteristic classes and of line bundles on loop spaces II. Preprint (1995). To appear in Duke Math. J.

  10. Cheeger, J.: Spectral geometry of singular riemannian spaces. J. Diff. Geom.18, 575–657 (1983)

    Google Scholar 

  11. Cheeger, J., Simons, J.: Differential characters and geometric invariants. Lecture Notes in Math. vol.1167, Berlin, Heidelberg, New York: Springer, 1985, pp. 50–80

    Google Scholar 

  12. Chern, S.S., Simons, J.: Characteristic forms and geometric invariants. Ann. Math.99, 48–69 (1974)

    Google Scholar 

  13. Dupont, J.: The dilogarithm as a characteristic class for flat bundles. J. Pure Appl. Alg.44, 137–164 (1987)

    Google Scholar 

  14. Dupont, J.: Characteristic classes for flat bundles and their formulas. Topology33, 575–590 (1994)

    Google Scholar 

  15. Esnault, H.: Characteristic classes of flat bundles. Topology27, 323–352 (1987)

    Google Scholar 

  16. Gabrielov, A., Gel'fand, I.M., Losik, M.V.: Combinatorial calculation of characteristic classes. Funct. Anal. Appl.9, 48–50, 103–115, 186–202 (1975)

    Google Scholar 

  17. Gel'fand, I.M., MacPherson, R.: A combinatorial formula for the Pontryagin classes. Bull. A. M. S.26, no. 2, 304–309 (1992)

    Google Scholar 

  18. Goncharov, A.B.: Explicit construction of characteristic classes. Adv. Soviet Math.16, Part I 169–210 (1993)

    Google Scholar 

  19. Laursen, M.L., Schierholz, G., Wiese, U-J.: 2 and 3-cochains in 4-dimensionalSU(2)-gauge theory. Commun. Math. Phys.103, 693–699 (1986)

    Google Scholar 

  20. MacPherson, R.: The combinatorial formula of Gabrielov, Gel'fand and Losik for the first Pontryagin class. Séminaire Bourbaki, Exposés 498–506, Lecture Notes in Math. vol.677, Berlin, Heidelberg, New York, 1977, pp. 105–124

  21. Narasimhan, M.S., Ramanan, S.: Existence of universal connections. Am. J. Math.83, 563–572 (1961)85, 223–231 (1963)

    Google Scholar 

  22. Weil, A.: Sur les théorèmes de de Rham. Commun. Math. Helv.26, 119–145 (1952)

    Google Scholar 

  23. Zucker, S.: The Cheeger-Simons invariant as a Chern class. In: “Algebraic analysis, Geometry and Number Theory, Proc. JAMI Inaugural Conference”, JHU Press, 1989, pp. 397–417

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Araki

The first author was supported in part by N.S.F. grant DMS-9203517.

The second author was supported in part by N.S.F. grant DMS-9310433.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brylinski, J.L., McLaughlin, D.A. Čech cocycles for characteristic classes. Commun.Math. Phys. 178, 225–236 (1996). https://doi.org/10.1007/BF02104916

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02104916

Keywords

Navigation