Advertisement

Siberian Mathematical Journal

, Volume 37, Issue 3, pp 552–572 | Cite as

On a numerical method for solving a certain inverse problem for a hyperbolic equation

  • V. G. Romanov
Article

Keywords

Inverse Problem Hyperbolic Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Kunetz, “Generalisation des operateurs d'antiresonance a'un nombe quelconque de reflecteurs,” Geophys. Prospecting,12, 283–289 (1964).Google Scholar
  2. 2.
    A. S. Alekseev, “Inverse dynamical seismic problems,” in: Some Methods and Algorithms for Interpretation of Geophysical Data [in Russian], Nauka, Moscow, 1967, pp. 9–84.Google Scholar
  3. 3.
    A. S. Alekseev and V. I. Dobrinskii, “Some questions of applying inverse dynamical seismic problems,” in: Mathematical Problems in Geophysics [in Russian], Vychislit. Tsentr Sibirsk. Otdel. Akad. Nauk SSSR, Novosibirsk, 1975,6, No. 2, pp. 7–53.Google Scholar
  4. 4.
    S. I. Kabanikhin, “Finite-difference regularization of an inverse problem for the oscillation equation,” in: Questions of Well-Posedness in Problems of Mathematical Physics [in Russian], Vychislit. Tsentr Sibirsk. Otdel. Akad. Nauk SSSR, Novosibirsk, 1977, pp. 57–69.Google Scholar
  5. 5.
    Y. M. Chen and D. S. Tsien, “A numerical algorithm for remote sensing of density profiles of a simple ocean model by acoustic pulses,” J. Comput. Phys.,25, 366–385 (1977).CrossRefGoogle Scholar
  6. 6.
    G. Chavent, “About the stability of the optimal control solution of inverse problems,” in: Inverse and Improperly Posed Problems in Differential Equations, Akad. Ferl., 1979, pp. 45–58.Google Scholar
  7. 7.
    A. Bamberger, G. Chavent, and P. Lailly, “Solving the inverse seismic problem based on the optimal control theory,” in: Computational Methods in Applied Mathematics [in Russian], Nauka, Novosibirsk, 1982, pp. 108–118.Google Scholar
  8. 8.
    A. V. Baev, “On solving a certain inverse problem for the wave equation by the regularization algorithm,” Zh. Vychisl. Mat. i Mat. Fiz.,25, No. 1, 140–146 (1985).Google Scholar
  9. 9.
    S. I. Kabanikhin, Projection-Difference Methods for Determining Coefficients of Hyperbolic Equations [in Russian], Nauka, Novosibirsk (1988).Google Scholar
  10. 10.
    S. I. Kabanikhin and V. G. Romanov, Inverse Problems for Geoelectrics [in Russian], Nauka, Moscow (1991).Google Scholar
  11. 11.
    F. Santosa, “Numerical scheme for the inversion of acoustical impedance profile by methods of characteristics,” Geophys. J. Roy. Astr. Soc,70, 229–244 (1992).Google Scholar
  12. 12.
    S. I. Kabanikhin, “Application of energy inequalities to a certain inverse problem for a hyperbolic equation,” Differentsial'nye Uravneniya,15, No. 1, 61–67 (1979).Google Scholar
  13. 13.
    S. I. Kabanikhin, “On solvability of inverse problems for differential equations,” Dokl. Akad. Nauk SSSR,277, No. 4, 788–791 (1984).Google Scholar
  14. 14.
    S. I. Kabanikhin, “Regularization of multidimensional inverse problems for hyperbolic equations based on the projection method,” Dokl. Akad. Nauk SSSR,292, No. 3, 534–537 (1987).Google Scholar
  15. 15.
    V. G. Romanov, “On solvability of inverse problems for hyperbolic equations in a class of functions analytic in part of variables,” Dokl. Akad. Nauk SSSR,304, No. 4, 807–811 (1989).Google Scholar
  16. 16.
    V. G. Romanov, “On local solvability of some multidimensional inverse problems for hyperbolic equations,” Differentsial'nye Uravneniya,25, No. 2, 275–283 (1989).Google Scholar
  17. 17.
    L. Nirenberg, Topics in Nonlinear Functional Analysis, Courant Inst. Math. Sci., New York University, New York (1974).Google Scholar
  18. 18.
    V. G. Romanov, “Questions of well-posedness of the problem of determining the speed of sound,” Sibirsk. Mat. Zh.,30, No. 4, 125–135 (1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • V. G. Romanov
    • 1
  1. 1.Novosibirsk

Personalised recommendations