Siberian Mathematical Journal

, Volume 37, Issue 3, pp 513–518 | Cite as

In the shadow of a positive operator

  • E. V. Kolesnikov


Positive Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. D. Aliprantis and O. Burkinshaw, “Projecting onto the band of kernel operators,” Houston J. Math.,11, No. 1, 7–13 (1985).Google Scholar
  2. 2.
    A. G. Kusraev and V. Z. Strizhevskii, “Lattice-normed spaces and dominated operators,” in: Studies on Geometry and Mathematical Analysis [in Russian], Trudy Inst. Mat. (Novosibirsk). Vol. 7, Novosibirsk, Nauka, 1987, pp. 132–158.Google Scholar
  3. 3.
    E. V. Kolesnikov, “Decomposition of a positive operator,” Sibirsk. Mat. Zh.,30, No. 5, 77–79 (1989).Google Scholar
  4. 4.
    S. S. Kutateladze, “On fragments of positive operators,” Sibirsk. Mat. Zh.,30, No. 5, 111–119 (1989).Google Scholar
  5. 5.
    A. V. Bukhvalov, V. B. Korotkov, A. G. Kusraev et al., Vector Lattices and Integral Operators [in Russian], Nauka, Novosibirsk (1992).Google Scholar
  6. 6.
    B. Lavrič, “On Freudenthal's spectral theorem,” Indag. Math.,48, No. 4, 411–422 (1986).Google Scholar
  7. 7.
    A. G. Kusraev and S. A. Malyugin, “The order-continuous component of a dominated operator,” Sibirsk. Mat. Zh.,28, No. 4, 127–139 (1987).Google Scholar
  8. 8.
    E. V. Kolesnikov, “Several order projections generated by ideals of a vector lattice,” Sibirsk. Mat. Zh.,36, No. 6, 1342–1349 (1995).Google Scholar
  9. 9.
    W. A. J. Luxemburg and A. R. Schep, “A Radon-Nikodým type theorem for positive operators and a dual,” Indag. Math.,40, No. 3, 357–375 (1978).Google Scholar
  10. 10.
    E. V. Kolesnikov, A. G. Kusraev, and S. A. Malyugin, On Dominated Operators [Preprint, No. 26] [in Russian], Inst. Mat. (Novosibirsk), Novosibirsk (1988).Google Scholar
  11. 11.
    A. G. Kusraev, “Linear operators in lattice-normed spaces,” in: Studies on Geometry in the Large and Mathematical Analysis [in Russian], Trudy Inst. Mat. (Novosibirsk). Vol. 9, Novosibirsk, Nauka, 1987, pp. 84–123.Google Scholar
  12. 12.
    A. E. Gutman, “Banach bundles in the theory of lattice-normed spaces,” in: Linear Operators Compatible with Order [in Russian], Trudy Inst. Mat. (Novosibirsk). Vol. 29, Novosibirsk, 1995, pp. 63–211.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • E. V. Kolesnikov
    • 1
  1. 1.Novosibirsk

Personalised recommendations