Advertisement

Siberian Mathematical Journal

, Volume 37, Issue 3, pp 490–499 | Cite as

On subspaces of nuclear spaces

  • M. M. Dragilev
Article
  • 18 Downloads

Keywords

Nuclear Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. M. Dragilev, “On regular bases for nuclear spaces,” Mat. Sb.,62, No. 2, 153–173 (1965).Google Scholar
  2. 2.
    M. M. Dragilev, Bases for the Köthe Spaces [in Russian], Rostov-on-Don (1983).Google Scholar
  3. 3.
    H. Ahonen, “On nuclear Köthe spaces, defined by Dragilew functions,” Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes,38, Helsinki (1981).Google Scholar
  4. 4.
    M. M. Dragilew, On Spaces of Generalizes Dirichlet Series [Preprint], Tubitak (1996).Google Scholar
  5. 5.
    M. M. Dragilev, “On two representations of theLf spaces,” submitted to VINITI on 1982, No. 5954–82.Google Scholar
  6. 6.
    M. A. Evgrafov, Asymptotic Estimates and Entire Functions [in Russian], Nauka, Moscow (1979).Google Scholar
  7. 7.
    A. Dynin and B. Mitiagin, “Criterion for nuclearity in terms of approximative dimension,” Bull. Acad. Pol. Sci.,55, No. 3, 269–271 (1975).Google Scholar
  8. 8.
    B. S. Mityagin, “Approximative dimension and bases for nuclear spaces,” Uspekhi Mat. Nauk,16, No. 4, 63–132 (1961).Google Scholar
  9. 9.
    M. M. Dragilev, V. P. Zakharyuta, and Yu. F. Korobeinik, “Duality between some questions of the theory of bases and interpolation,” Dokl. Akad. Nauk SSSR,215, No. 3, 522–525 (1974).Google Scholar
  10. 10.
    A. I. Markushevich, The Theory of Analytic Functions [in Russian], Gostekhteoretizdat, Moscow and Leningrad (1950).Google Scholar
  11. 11.
    T. I. Abanina, Multiple Bases for Fréchet Spaces [in Russian], Dis. Kand. Fiz.-Mat. Nauk, Rostov-on-Don (1990).Google Scholar
  12. 12.
    Yu. F. Korobeinik, “On a certain dual problem,” Mat. Sb.,96, No. 2, 181–211 (1975).Google Scholar
  13. 13.
    M. M. Dragilev, “On special dimensions defined over some classes of Köthe spaces,” Mat. Sb.,80, No. 2, 225–240 (1969).Google Scholar
  14. 14.
    M. M. Dragilev and V. P. Kondakov, “On a certain class of nuclear spaces,” Mat. Zametki,8, No. 2, 169–179 (1970).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • M. M. Dragilev
    • 1
  1. 1.Rostov-on-Don

Personalised recommendations