Siberian Mathematical Journal

, Volume 37, Issue 3, pp 454–460 | Cite as

Uniqueness in one inverse problem of memory reconstruction

  • A. L. Bukhgeim
  • G. V. Dyatlov


Inverse Problem Memory Reconstruction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. M. Lavrent'iev, “On one inverse problem for the wave equation,” Dokl. Akad. Nauk SSSR,157, No. 3, 520–521 (1964).Google Scholar
  2. 2.
    M. M. Lavrent'iev, “One class of inverse problems for differential equations,” Dokl. Akad. Nauk SSSR,160, No. 1, 32–35 (1965).Google Scholar
  3. 3.
    M. Riesz, “Integrales de Riemmann-Liouville et potentiels,” Acta Szeged,9, 1–42 (1938).Google Scholar
  4. 4.
    A. L. Bukhgeim, Volterra Equations and Inverse Problems [in Russian], Nauka, Novosibirsk (1983).Google Scholar
  5. 5.
    C. S. Kahane, “The solution of a mildly singular integral equation of the first kind on a ball,” Integral Equations Operator Theory,6, No. 1, 67–133 (1983).CrossRefGoogle Scholar
  6. 6.
    S. G. Samko, A. A. Kilbas, and O. I. Marichev, Integrals and Derivatives of Fractional Order and Some of Their Applications [in Russian], Nauka and Tekhnika, Minsk (1987).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • A. L. Bukhgeim
    • 1
  • G. V. Dyatlov
    • 1
  1. 1.Novosibirsk

Personalised recommendations