Skip to main content
Log in

Poisson-Lie group of pseudodifferential symbols

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We introduce a Lie bialgebra structure on the central extension of the Lie algebra of differential operators (with scalar or matrix coefficients) on the line and on the circle. This defines a Poisson-Lie structure on the dual group of pseudodifferential symbols of an arbitrary real (or complex) order. We show that the usual (second) Benney, GL n -KdV (or GL n -Adler-Gelfand-Dickey) and KP Poisson structures are naturally realized as restrictions of this Poisson structure to submanifolds of this “universal” Poisson-Lie group. Moreover, the reduced (=SL n ) versions of these manifolds (orW n -algebras in physical terminology) can be viewed as certain subspaces of the quotient of this Poisson-Lie group by the dressing action of the group of functions on the circle (or as a result of a Poisson reduction). Finally we define an infinite set of commuting functions on the Poisson-Lie group that give the standard families of Hamiltonians when restricted to the submanifolds mentioned above. The Poisson structure and Hamiltonians on the whole group interpolate between the Poisson structures and Hamiltonians of Benney, KP and KdV flows. We also discuss the geometrical meaning ofW as a limit of Poisson algebrasW ε as ε→0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, M.: On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg-de Vries type equation. Invent. Math 50, no. 3, 219–248 (1979)

    Google Scholar 

  2. Arnold, V.I.: Mathematical methods of classical mechanics Berlin Heidelberg, New York, Springer, 2nd ed. (1989)

    Google Scholar 

  3. Bakas, I. Khesin, B. Kiritsis, E.: The logarithm of the derivative operator and higher spin algebras ofW type. Commun. Math. Phys.151, 233–243 (1993)

    Google Scholar 

  4. Date, E. Jimbo, M. Kashiwara, M. Miwa, T.: Transformation group for soliton equations. Publ. RIMS18, 1077–1110 (1982)

    Google Scholar 

  5. Dickey, L.A.: Solition equations and Hamiltonian systems. Advanced Series in Math. Physics, Vol. 12, Singapore, World Scientific, (1991)

    Google Scholar 

  6. Drinfeld, V.G.: Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of classical Yang-Baxter equations. Doklady Akademii Nauk SSSR268, no. 2, 285–287 (1983) (Russian)

    Google Scholar 

  7. Drinfeld, V.G. Sokolov, V.V.: Lie algebras and equations of Korteweg-de Vries type. Current problems in mathematics (Moscow), Itogi Nauki i Tekhniki, Vol.24, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., 1984, pp. 81–180 (Russian) English transl. in J. Sov. Math. Vol.30, 1975–2036 (1985)

    Google Scholar 

  8. Enriques, B. Khoroshkin, S. Radul, A. Rosly, A. Rubstov, V.: Poisson-Lie aspects of classical W-algebras. Preprint, Ecole Polytechnique, (1993)

  9. Feigin, B.L.: Lie algebras gl(λ) and cohomology of a Lie algebra of differential operators. Russ. Math. Surv.43, no. 2, 169–170 (1988)

    Google Scholar 

  10. Feigin, B.L.: Private communication

  11. Figueroa, J.M. Mas, J. Ramos, E.: A one-parameter family of Hamiltonian structures for the KP hierarchy and a continuous deformation of the nonlinearW KP algebra. Preprint, hepth/9207092, July (1992)

  12. Gelfand, I.M. Dickey, L.A.: A family of Hamiltonian structures associated with nonlinear integrable differential equations. Preprint, IPM AN SSSR, Moscow, (1978)

    Google Scholar 

  13. Gervais, J.-L.: Infinite family of polynomial functions of the Virasoro generators. Phys. Lett. B160, 277–278 (1985)

    Google Scholar 

  14. Kac, V.G.: Infinite-dimensional Lie algebras. Cambridge: Cambridge University Press, 1990, 3rd ed.

    Google Scholar 

  15. Kac, V.G. Peterson, D.H.: Spin and wedge representations of infinite-dimensional Lie algebras and groups. Proc. Nat. Ad. Sci. USA78, 3308–3312 (1981)

    Google Scholar 

  16. Khesin, B. Lyubashenko, V. Roger, C.: Extensions and contractions of the Lie algebra ofq-pseudodifferential operators. Preprint hep-th 9403189, March (1994)

  17. Khesin, B. Malikov, F.: Universal Drinfeld-Sokolov reduction and matrices of complex size. Preprint hep-th 9405116, May (1994), to appear in Comm. Math. Phys.

  18. Khesin, B.A. Zakharevich, I.S.: Poisson Lie group of pseudodifferential symbols and fractional KP-KdV hierarchies. C. R. Acad. Sci.316, 621–626 (1993)

    Google Scholar 

  19. Khesin, B.A. Zakharevich, I.S.: The Gelfand-Dickey structure and an extension of the Lie algebra of pseudodifferential symbols. In preparation

  20. Khovanova, T.G.: Gelfand-Dickey Lie algebras and Virasoro algebra. Funct. Anal. Appl20, no. 4, 89–90 (1986)

    Google Scholar 

  21. Kravchenko, O.S. Khesin, B.A.: Central extension of the algebra of pseudodifferential symbols. Funct. Anal. Appl.25, no. 2, 83–85 (1991)

    Google Scholar 

  22. Kupershmidt, B.A. Wilson, G.: Modifying Lax equations and the second Hamiltonian structure. Invent. Math.62, no. 3, 403–436 (1981)

    Google Scholar 

  23. Lebedev, D.R. Manin, Yu.I.: Conservation laws and Lax representations of Benney's long wave equations. Phys. Lett. A74, no. 3-4, 154–156 (1979)

    Google Scholar 

  24. Lebedev, D.R. Manin, Yu.I.: The Gelfand-Dikii Hamiltonian operator and the coadjoint representation of the Volterra group. Akademiya Nauk SSSR. Funktionalnyi Analiz i ego Prilozheniya13, no. 4, 40–46 (1979) (Russian)

    Google Scholar 

  25. Lebedev, D.R. Manin, Yu.I.: Benney's long wave equations. II. The Lax representations and conservation laws. Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta imeni V.A.: Steklova Akademii Nauk SSSR (LOMI)96, 169–178 (1980) (Russian); Boundary value problems of mathematical physics and related questions in the theory of functions, 12.

    Google Scholar 

  26. Li, W.L.: 2-cocyles on the algebra of differential operators. J. of Algebra122, 64–80 (1989)

    Google Scholar 

  27. Lu, J.-H. Weinstein, A.: Poisson Lie groups, dressing transformations, and Bruhat decompositions. J. Diff. Geo.31, no. 2, 501–526 (1990)

    Google Scholar 

  28. Ovsienko, V.Yu. Khesin, B.A.: Korteveg-de Vries superequation as an Euler equation. Funct. Anal. Appl.21, no. 4, 329–331 (1987)

    Google Scholar 

  29. Pope, C.N. Romans, L.J. Shen, X.:W and the Racah-Wigner algebra. Nuc. Phys.339B, 191–221 (1990)

    Google Scholar 

  30. Radul, A.O.: Central extension of Lie algebra of differential operators on a circle and w algebras. JETP Letters50, no. 8, 371–373 (1989)

    Google Scholar 

  31. Radul, A.O.: The Lie algebras of differential operators, their central extensions and W-algebras. Funct. Anal. Appl.25, no. 1, 33–49 (1991)

    Google Scholar 

  32. Roger, C.: Extensions centrales d'algébres et de groups de Lie de dimension infinie, algébre de Virasoro et génŕalization. Preprint, Institut de Mathématique, Université de Liège, Belgique, (1993)

    Google Scholar 

  33. Segal, G. Wilson, G.: Loop groups and equations of KdV type. Institut des Hautes Etudes Scientifiques. Publications Mathematiques no. 61, pp. 5–65 (1985)

    Google Scholar 

  34. Semenov-Tyan-Shanskii, M.A.: What a classicalr-matrix is Akademiya Nauk SSSR. Funktsionalnyi Analiz i ego Prilozheniya17, no. 4, 17–33 (1983) (Russian) English transl. in Funct. Anal. Appl. Vol.17, 259–272 (1983)

    Google Scholar 

  35. Semenov-Tyan-Shanskii, M.A.: Dressing transformations and Poisson group actions. Kyoto University. Research Institute for Mathematical Sciences. Publications21, no. 6, 1237–1260 (1985)

    Google Scholar 

  36. Semenov-Tyan-Shanskii, M.A.: Group-theoretical methods in the theory of integrable systems. Ph.D. thesis, LOMI, Leningrad, (1985)

    Google Scholar 

  37. Wodzicki, M.: Cyclic homology of differential operators. Duke Math.54, no. 2, 641–647 (1987)

    Google Scholar 

  38. Wodzicki, M.: Noncommutative residue. I. Fundamentals.K-theory, arithmetic and geometry, Lecture Notes in Math., Vol.1289, Moscow, 1984–1986, Berlin, Heidelberg, New York, Springer, pp 320–399 (1987)

    Google Scholar 

  39. Zakharevich, I.: The Second Gelfand-Dickey structure as a bracket on a Poisson-Lie Grassmannian. Adv. in Sov. Math.16, part 2, 179–208 (1993)

    Google Scholar 

  40. Zakharevich, I.: A short report on quantization of differential operators. In preparation

  41. Dzhumadildaev, A.S.: Derivations and central extensions of the Lie algebra of formal pseudodifferential operators. St. Peter. Math. J. Vol.6, 140–158 (1994)

    Google Scholar 

  42. Kontsevich, M., Vishik, S.: Determinants of elliptic pseudo-differential operators. Preprint MPI/94-30 (1994), to appear in GAFA

  43. Kontsevich, M., Vishik, S.: Geometry of determinants of elliptic operators. Preprint MPI/94-57 (1994)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. Felder

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khesin, B., Zakharevich, I. Poisson-Lie group of pseudodifferential symbols. Commun.Math. Phys. 171, 475–530 (1995). https://doi.org/10.1007/BF02104676

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02104676

Keywords

Navigation