Skip to main content
Log in

Equilibrium statistics of a vortex filament with applications

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The thermodynamic functions and scaling exponents (including the Kolmogorov and Flory exponents) of a vortex filament in thermal equilibrium are calculated, giving a quantitative content to earlier qualitative analyses. The numerical results uncover a percolation property of vortex filaments near the maximum entropy state. The implications of the results for the onset of turbulence, for the structure of its inertial range, and for superfluid vortices are discussed. In particular, it is shown that vortex stretching pushes a vortex system to a polymeric state and a Kolmogorov spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bell, J., Marcus, D.: The evolution of a perturbed vortex filament, Report UCRL-JC-105029, Lawrence Livermore Laboratory, 1990

  2. Chorin, A.J.: The evolution of a turbulent vortex. Commun. Math. Phys.83, 517–535 (1982)

    Article  Google Scholar 

  3. Chorin, A.J.: Turbulence and vortex stretching on a lattice. Commun. Pure Appl. Math.39 (special issue), S47-S65 (1986)

    Google Scholar 

  4. Chorin, A.J.: Scaling laws in the lattice vortex model of turbulence. Commun. Math. Phys.114, 167–176 (1988)

    Article  Google Scholar 

  5. Chorin, A.J.: Spectrum, dimension and polymer analogies in fluid turbulence. Phys. Rev. Lett.60, 1947–1949 (1988)

    Article  Google Scholar 

  6. Chorin, A.J.: Constrained random walks and vortex filaments in turbulence theory. Commun. Math. Phys.132, 519–536 (1990)

    Article  Google Scholar 

  7. Chorin, A.J.: Vortices, turbulence and statistical mechanics. In: Vortex flows and vortex methods, Gustafson, K., Sethian, J. (eds.). SIAM, 1991

  8. Chorin, A.J.: Statistical mechanics and vortex motion, to appear in the Proc. 1990 AMS/SIAM Summer School. Anderson, C., Greengard, C. (eds.)

  9. Chorin, A.J., Akao, J.: Vortex equilibria in turbulence theory and quantum analogues. Physica D, in press (1991)

  10. Cocke, W.J.: Turbulent hydrodynamic line stretching: consequences of isotropy. Phys. Fluids12, 2490–2492 (1969)

    Article  Google Scholar 

  11. de Gennes, P.G.: Scaling concepts in polymer physics. Cornell University Press 1971

  12. Grimmett, G.: Percolation. Berlin, Heidelberg, New York: Springer 1989

    Google Scholar 

  13. Kosterlitz, J., Thouless, D.J.: Order, metastability and phase transitions in two dimensional systems. J. Phys. C: Solid State Phys.6, 1101–1203 (1973)

    Article  Google Scholar 

  14. Lal, M.: Monte Carlo computer simulations of chain molecules. Molecular Phys.17, 57–64 (1969)

    Google Scholar 

  15. Lamb, H.: Hydrodynamics, NY: Dover 1932

    Google Scholar 

  16. Landau, L., Lifshitz, L.: Statistical physics, 3rd edition, part 1. New York: Pergamon Press 1980

    Google Scholar 

  17. Lesieur, M.: Turbulence et structures cohérentes dans les fluides. Nonlinear partial differential equations and their applications. Collège de France seminar 1989–1990. Brezis, H., Lions, J.L. (eds.). Paris: Pitman Press 1990

    Google Scholar 

  18. Madras, N., Sokal, A.: The pivot algorithm: a highly efficient Monte Carlo method for self-avoiding walks. J. Stat. Phys.50, 107–186 (1988)

    Article  Google Scholar 

  19. Meirovitch, H.: A Monte Carlo study of the entropy, the pressure, and the critical behavior of the hard sphere lattice gas. J. Stat. Phys.30, 681–698 (1984)

    Article  Google Scholar 

  20. Montgomery, D., Phillips, L.: Minimum dissipation and maximum entropy. In: Maximum entropy and Bayesian methods. Fougère, P.F. (ed.). The Netherlands: Kluwer 1990

    Google Scholar 

  21. Onsager, L.: Statistical hydrodynamics. Nuovo Cimento. [Suppl.]6, 279–287 (1949)

    Google Scholar 

  22. Robert, R.: A maximum entropy principle for two dimensional perfect fluid dynamics (to appear) (1991)

  23. Shenoy, S.R.: Vortex loop scaling in the three dimensionalXY ferromagnet. Phys. Rev. B40, 5056–5068 (1987)

    Article  Google Scholar 

  24. Sreenivasan, K.R., Meneveau, C.: The fractal aspects of turbulence. J. Fluid Mech.173, 357–386 (1986)

    Google Scholar 

  25. Williams, G.: Vortex ring model of the superfluid λ transition. Phys. Rev. Lett.59, 1926–1927 (1987)

    Article  Google Scholar 

  26. Williams, G.: Vortices and the superfluid4H transition in two and three dimensions. Proc. Exeter Conf. Excitations and Quantum Fluids. Wyatt, A.F.A. (ed.). NATO, 1990

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Jaffe

This work was supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S. Department of Energy, under contract DE-AC03-76SF-00098, and in part by the National Science Foundation under grant number DMS89-19074

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chorin, A.J. Equilibrium statistics of a vortex filament with applications. Commun.Math. Phys. 141, 619–631 (1991). https://doi.org/10.1007/BF02102820

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02102820

Keywords

Navigation