Skip to main content
Log in

Semiclassical study of quantum scattering on the line

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the well-known problem of 1-d quantum scattering by a potential barrier in the semiclassical limit. Using the so-called exact WKB method and semiclassical microlocal analysis techniques, we get a very precise and complete description of the scattering matrix, in particular when the energy is very close to a unique, quadratic maximum of the potential. In our one-dimensional setting, we also recover the Bohr-Sommerfeld quantization condition for the resonances generated by such a maximum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [Ag-Kl] Agmon, S., Klein, M.: Analyticity properties in scattering and spectral theory for Schrödinger operators with long-range radial potentials Duke Mathematical Journal, 68 (2), 337–399 (1992)

    Google Scholar 

  • [As-Du] Asch, J., Duclos, P.: An elementary model of dynamical tunneling. Differential equations with applications to mathematical physics, Mathematical Science Engineering 192, Boston, MA: Academic Press, pp. 1–11 (1993)

    Google Scholar 

  • [Br-Co-Du] Briet, P., Combes, J.-M., Duclos, P.: On the location of resonances for Schrödinger operators in the semiclassical limit II: Barrier top resonances. Comm. in Partial Differential Equations, 12(2), 201–222 (1987)

    Google Scholar 

  • [Co-Pa] Colin de Verdière, Y., Parisse, B.: Equilibre instable en régime semi-classique I: Concentration microlocale. Prépublication de l'Institut Fourier n.252, 1993

  • [De] Delort, J.-M.: F.B.I. transformation. Lecture Notes in Maths 1522, Berlin, Heidelberg, New York: Springer, 1993

    Google Scholar 

  • [Ec] Ecalle, J.: Les Fonctions résurgentes, Publications Mathématiques d'Orsay 81-05, 1981

  • [Ev-Fe] Fedoryuk, M.V.: Asymptotic behavior as λ→∞ of the solution of the equationw″(z)−p(z,λ)w(z)=0 in the complexz-plane. Russ. Math. Surv., 21, 1–48 (1966)

    Google Scholar 

  • [Fe] Fedoryuk, M.V.: One-dimensional scattering in the quasiclassical approximation. Differential Equations 1, 483–495, 1201–1210 (1965)

    Article  Google Scholar 

  • [Fr-Fr] Fröman, N., Fröman, P.O.: JWKB approximation. Amsterdam: North-Holland (1965)

    Google Scholar 

  • [Ge-Gr] Gérard, C., Grigis, A.: Precise estimates of tunneling and eigenvalues near a potential barrier., J. Differ. Eqs. 42, 149–177 (1988)

    Article  Google Scholar 

  • [Gr] Grigis, A.: Estimations asymptotiques des intervalles d'instabilité pour l'équation de Hill., Ann. Sc. Ecole Normale Supérieure, 4-ième série, 20, 641–672 (1987)

    Google Scholar 

  • [Hd] Heading, J.: An introduction to phase-integral methods., Methuen, 1962

  • [He-Sj] Helffer, B., Sjöstrand, J.: Semiclassical analysis of Harper's equation III. Bull. Soc. Math. France, Mémoire 39, 1990

  • [Hö] Hörmander, L.: The analysis of linear partial differential operators I. Grundlheren der mathematishen Wissenschaften 256, Berlin, Heidelberg, New York: Springer 1985.

    Google Scholar 

  • [Je] Jeffreys, H.: On the use of asymptotic approximations of Green's type when the coefficients has zeros. Proc. Cambridge Philos. Soc. 52, 61–66 (1956)

    Google Scholar 

  • [La] Langer, R.E.: On the connection formulas and the solutions of the wave equation. Phys. Rev. 51, 669–676 (1937)

    Article  Google Scholar 

  • [Mä] März, C.: Spectral asymptotics for Hill's equation near the potential maximum. Asymptotic Analysis 5, 221–267 (1992)

    Google Scholar 

  • [Na] Nakamura, S.: Tunneling effects in momentum space and scattering. Lecture Notes in Pure Appl. Math. 161 (Spectral and Scattering Theory, ed. M. Ikawa), New York: Marcel Decker, 1994

    Google Scholar 

  • [Ol1] Olver, F.W.J.: Error analysis of phase-integral methods II. Application to wave penetration problems. J. Res. Nat. Bur. Standards, Sect. B 69, 291–300 (1965)

    Google Scholar 

  • [Ol2] Olver, F.W.J.: Asymptotic and special functions. New York: Academic Press, 1974

    Google Scholar 

  • [Ra] Ramond, T.: Intervalles d'instabilité pour une équation de Hill à potentiel méromorphe. Bull. Soc. Math. France, 121, 403–444 (1993)

    Google Scholar 

  • [Sj1] Sjöstrand, J.: Semiclassical resonances generated by non-degenerate critical points. Lecture Notes in Maths 1256, Berlin, Heidelberg, New York: Springer, 1987, pp. 402–429

    Google Scholar 

  • [Sj2] Sjöstrand, J.: Singularités analytiques microlocales, Astérisque 95 (1982)

  • [Sj3] Sjöstrand, J.: Density of states oscillations for magnetic Schrödinger operators. Proceedings of the International Conference at Birmingham (AI), USA, 1990, Mathematical Science Engineering 186, Boston, MA: Academic Press, pp. 295–345 (1992)

    Google Scholar 

  • [Vo] Voros, A.: The Return of the Quartic Oscillator. The Complex WKB Method. Ann. Inst. H. Poincaré Phys. Théor., 39(3) (1983)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B. Simon

This article was processed by the author using theLatex style filepljour1 from Springer-Verlag.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramond, T. Semiclassical study of quantum scattering on the line. Commun.Math. Phys. 177, 221–254 (1996). https://doi.org/10.1007/BF02102437

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02102437

Keywords

Navigation