Advertisement

Communications in Mathematical Physics

, Volume 154, Issue 3, pp 603–611 | Cite as

A one-dimensional model with phase transition

  • Michel Mendès France
  • Gérald Tenenbaum
Article

Abstract

Two repellent particles are bound to occupy two among thek n +1 adjacent sites 0=x 0 (n) <x 1 (n) <...<x kn (n) =1, sayx q (n) ,x q+1 (n) . Define the Hamiltonian ℋ q (n) =−ln(x q+1 (n) −x q (n) ) and the partition function
We discuss the behaviour of the function
$$F(\beta ) = \mathop {\lim \sup }\limits_{n \to + \infty } \frac{{\ln Z(\beta , n)}}{{\ln k_n }},$$
closely related to the free energy. We prove that the smallest real zero ofF(β) is equal to the fractal dimension of the system and that this number, when less than one, is a critical value whereF is not analytic.

Keywords

Neural Network Phase Transition Free Energy Statistical Physic Complex System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Landau, L., Lifchitz, E.: Physique mathématique, 2nd ed. Moscow: Mir 1967Google Scholar
  2. 2.
    Mendès France, M., Tenenbaum, G.: Systemes de points, diviseurs, et structure fractale. Bull. Soc. Math. de France121 (1993)Google Scholar
  3. 3.
    Ramsey, N.F.: Thermodynamics and statistical mechanics at negative absolute temperatures. Phys. Rev.103, 20 (1956)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Michel Mendès France
    • 1
  • Gérald Tenenbaum
    • 2
  1. 1.Département de MathématiquesUniversité Bordeaux ITalence CedexFrance
  2. 2.Département de MathématiquesUniversité Nancy 1Vandoeuvre CedexFrance

Personalised recommendations