Skip to main content
Log in

Steady-state electrical conduction in the periodic Lorentz gas

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study nonequilibrium steady states in the Lorentz gas of periodic scatterers when an electric external field is applied and the particle kinetic energy is held fixed by a “thermostat” constructed according to Gauss’ principle of least constraint (a model problem previously studied numerically by Moran and Hoover). The resulting dynamics is reversible and deterministic, but does not preserve Liouville measure. For a sufficiently small field, we prove the following results: (1) existence of a unique stationary, ergodic measure obtained by forward evolution of initial absolutely continuous distributions, for which the Pesin entropy formula and Young's expression for the fractal dimension are valid; (2) exact identity of the steady-state thermodynamic entropy production, the asymptotic decay of the Gibbs entropy for the time-evolved distribution, and minus the sum of the Lyapunov exponents; (3) an explicit expression for the full nonlinear current response (Kawasaki formula); and (4) validity of linear response theory and Ohm's transport law, including the Einstein relation between conductivity and diffusion matrices. Results (2) and (4) yield also a direct relation between Lyapunov exponents and zero-field transport (=diffusion) coefficients. Although we restrict ourselves here to dimensiond=2, the results carry over to higher dimensions and to some other physical situations: e.g. with additional external magnetic fields. The proofs use a well-developed theory of small perturbations of hyperbolic dynamical systems and the method of Markov sieves, an approximation of Markov partitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramov, L.M.: On the Entropy of a Flow. Dokl. Akad. Nauk SSSR128, 873–875 (1959)

    Google Scholar 

  2. Bunimovich, L.A., Sinai, Ya.G.: Markov Partitions for Dispersed Billiards. Commun. Math. Phys.73, 247–280 (1980)

    Article  Google Scholar 

  3. Bunimovich, L.A., Sinai, Ya.G.: Statistical Properties of Lorentz Gas with Periodic Configuration of Scatterers. Commun. Math. Phys.78, 479–497 (1981)

    Google Scholar 

  4. Bunimovich, L.A., Sinai, Ya.G., Chernov, N.I.: Markov Partitions for Two-Dimensional Hyperbolic Billiards. Russ. Math. Surv.45, 105–152 (1990)

    Google Scholar 

  5. Bunimovich, L.A., Sinai, Ya.G., Chernov, N.I.: Statistical Properties of Two-Dimensional Hyperbolic Billiards. Russ. Math. Surv.46, 47–106 (1991)

    Google Scholar 

  6. Bunimovich, L.A.: A Theorem on Ergodicity of Two-Dimensional Hyperbolic Billiards. Commun. Math. Phys.130, 599–621 (1990)

    Article  Google Scholar 

  7. Chernov, N.I.: The Ergodicity of a Hamiltonian System of Two Particles in an External Field. Physica D53, 233–239 (1991)

    Article  Google Scholar 

  8. Chernov, N.I.: Ergodic and Statistical Properties of Piecewise Linear Hyperbolic Automorphisms of the 2-Tours. J. Stat. Phys.69, 111–134 (1992)

    Article  Google Scholar 

  9. Chernov, N.I.: Statistical Properties of the Periodic Lorentz Gas: Multidimensional Case. In preparation

  10. Cornfeld, I.P., Fomin, S.V., Sinai, Ya.G.: Ergodic Theory. Berlin, Heidelberg, New York: Springer 1982

    Google Scholar 

  11. Donnay, V., Liverani, C.: Potentials on the Two-Torus for Which the Hamiltonian Flow is Ergodic. Commun. Math. Phys.135, 267–302 (1991)

    Article  Google Scholar 

  12. Evans, D.J., Morriss, G.P.: Statistical Mechanics of Nonequilibrium Liquids. San Diego, CA: Academic Press 1990

    Google Scholar 

  13. Eyink, G.L., Lebowit, J.L., Spohn, H.: Microscopic Origin of Hydrodynamic Behavior: Entropy Production and the Steady State. Chaos/Xaoc Soviet-American Perspectives on Nonlinear Science. New York: American Institute of Physics, 1990, pp. 367–391

    Google Scholar 

  14. Eyink, G.L., Lebowitz, J.L., Spohn, H.: Hydrodynamics of Stationary Non-Equilibrium States for Some Stochastic Lattice Gas Models. Commun. Math. Phys.132, 253–283 (1990)

    Google Scholar 

  15. Gallavotti, G., Ornstein, D.: Billiards and Bernoulli schemes. Commun. Math. Phys.38, 83–101 (1974)

    Article  Google Scholar 

  16. Gauss, K.F.: Uber ein neues allgemeines Grundgesetz der Mechanik. J. Reine Angew. Math.IV, 232–235 (1829)

    Google Scholar 

  17. Goldstein, S., Kipnis, C., Ianiro, N.: Stationary States for a Mechanical System with Stochastic Boundary Conditions. J. Stat. Phys.41, 915–939 (1985)

    Article  Google Scholar 

  18. Goldstein, S., Lebowitz, J.L., Presutti, E.: Mechanical Systems with Stochastic Boundaries. Colloquia Mathematicae Societatis Janos Bolyai27, Random Fields. Amsterdam: North-Holland 1981

    Google Scholar 

  19. de Groot, S., Masur, P.: Nonequilibrium Thermodynamics. Amsterdam: North-Holland 1962

    Google Scholar 

  20. Hoover, W.G.: Computational Statistical Mechanics. Amsterdam; Elsevier 1991

    Google Scholar 

  21. Ibragimov, I.A., Linnik, Y.V.: Independent and Stationary Sequences of Random Variables. Gröningen: Wolters-Noordhoff 1971

    Google Scholar 

  22. van Kampen, N.: The Case Against Linear Response Theory. Physica Norvegica5, 279–284 (1971)

    Google Scholar 

  23. Katok, A., Strelcyn, J.-M.: Invariant Manifolds, Entropy, and Billiards; Smooth Maps with Singularities. Lecture Notes in Mathematics, vol.1222, New York: Springer 1986

    Google Scholar 

  24. Katz, S., Lebowitz, J.L., Spohn, H.: Nonequilibrium Steady States of Stochastic Lattice Gas Models of Fast Ionic Conductors. J. Stat. Phys.34, 497–537 (1984)

    Article  Google Scholar 

  25. Krámli, A., Simányi, N., Száss, D.: A “Transversal” Fundamental Theorem for Semi-Dispersing Billiards. Commun. Math. Phys.129, 535–560 (1990)

    Article  Google Scholar 

  26. Kubo, R.: Statistical Mechanical Theory of Irreversible Processes. I. J. Phys. Soc. Jap.12, 570–586 (1957)

    Google Scholar 

  27. Lebowitz, J.L.: Stationary Nonequilibrium Gibbsian Ensembles. Phys. Rev.114, 1192–1202 (1959)

    Article  Google Scholar 

  28. Lebowitz, J.L., Bergmann, P.G.: Irreversible Gibbsian Ensembles. Ann. Phys.1, 1–23 (1957)

    Article  Google Scholar 

  29. McLennan, J.A. Jr.: Statistical Mechanics of the Steady State. Phys. Rev.115, 1405–1409 (1959)

    Article  Google Scholar 

  30. Moran, B., Hoover, W.: Diffusion in a Periodic Lorentz Gas. J. Stat. Phys.48, 709–726 (1987)

    Article  Google Scholar 

  31. Morris, G.P., Evans, D.J., Cohen, E.G.D., van Beijeren, H.: Phys. Rev. Lett.62, 1579 (1989)

    Article  Google Scholar 

  32. Ornstein, D.S., Weiss, B.: Statistical Properties of Chaotic Systems. Bull. Am. Math. Soc.24, 11–116 (1991)

    Google Scholar 

  33. Ruelle, D.: Thermodynamic Formalism. New York: Addison-Wesley 1978

    Google Scholar 

  34. Sinai, Ya.G.: Dynamical Systems with Elastic Reflections. Ergodic Properties of Dispersing Billiards. Russ. Math. Surv.25, 137–189 (1970)

    Google Scholar 

  35. Sinai, Ya.G., Chernov, N.I.: Ergodic Properties of some Systems of 2-Dimensional Discs and 3-Dimensional Spheres. Russ. Math. Surv.42, 181–207 (1987)

    Google Scholar 

  36. Sinai, Ya.G.: Hyperbolic Billiards. Proceedings of the International Congress of Mathematicians, Kyoto, Japan, 1990

  37. Toda, M., Kubo, R., Hashitume, N.: Statistical Physics II. Non-equilibrium Statistical Mechanics. Berlin, Heidelberg, New York: Springer 1985

    Google Scholar 

  38. Vaienti, S.: Ergodic Properties of the Discontinuous Sawtooth Map. J. Statist. Phys.67 (1992) (to appear)

  39. Vul, E.B., Sinai, Ya.G., Khanin, K.M.: Feigenbaum Universality and Thermodynamic Formalism. Russ. Math. Surv.39, 1–40 (1984)

    Google Scholar 

  40. Wojtkowski, M.: Principles for the Design of Billiards with Nonvanishing Lyapunov Exponents. Commun. Math. Phys.105, 391–414 (1986)

    Article  Google Scholar 

  41. Yamada, T., Kawasaki, K.: Nonlinear Effects in the Shear Viscosity of a Critical Mixture. Prog. Theor. Phys.38, 1031–1051 (1967)

    Google Scholar 

  42. Young L.-S.: Bowen-Ruelle Measures for Certain Piecewise Hyperbolic Maps. Trans. Am. Math. Soc.281, 41–48 (1985)

    Google Scholar 

  43. Young, L.-S.: Dimension, Entropy and Lyapunov Exponents. Erg. Th. and Dyn. Syst.2, 109–124 (1982)

    Google Scholar 

  44. Zubarev, D.N.: The Statistical Operator for Nonequilibrium Systems. Sov. Phys. Dokl.6, 776–778 (1962)

    Google Scholar 

  45. Zubarev, D.N.: Nonequilibrium Statistical Thermodynamics. New York: Consultants 1974.

    Google Scholar 

  46. Chernov, N.I., Eyink, G.L., Lebowitz, J.L., Sinai, Ya.G., Derivation of Ohm's Law in a Deterministic Mechanical Model. Submitted to Phys. Ref. Let.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Jaffe

Dedicated to Elliott Lieb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernov, N.I., Eyink, G.L., Lebowitz, J.L. et al. Steady-state electrical conduction in the periodic Lorentz gas. Commun.Math. Phys. 154, 569–601 (1993). https://doi.org/10.1007/BF02102109

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02102109

Keywords

Navigation