Communications in Mathematical Physics

, Volume 154, Issue 3, pp 509–521 | Cite as

Real Killing spinors and holonomy

  • Christian Bär


We give a description of all complete simply connected Riemannian manifolds carrying real Killing spinors. Furthermore, we present a construction method for manifolds with the exceptional holonomy groupsG2 and Spin(7).


Neural Network Manifold Statistical Physic Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baum, H.: Variétés riemanniennes admettant des spineurs de Killing imaginaries. C.R. Acad. Sci. Paris309, 47–49 (1989)Google Scholar
  2. 2.
    Baum, H.: Odd-dimensional Riemannian manifolds with imaginary Killing spinors. Ann. Glob. Anal. Geom.7, 141–153 (1989)CrossRefGoogle Scholar
  3. 3.
    Baum, H.: Complete Riemannian manifolds with imaginary Killing spinors. Ann. Glob. Anal. Geom.7, 205–226 (1989)CrossRefGoogle Scholar
  4. 4.
    Baum, H., Friedrich, T., Grunewald, R., Kath, I.: Twistor and Killing spinors on Riemannian manifolds. Seminarbericht108, Humboldt-Universität Berlin, 1990Google Scholar
  5. 5.
    Besse, A.L.: Einstein manifolds. Berlin, Heidelberg, New York: Springer 1987Google Scholar
  6. 6.
    Blair, D.E.: Contact manifolds in Riemannian geometry. Berlin, Heidelberg, New York: Springer 1976Google Scholar
  7. 7.
    Bonan, E.: Sur les variétés riemanniennes à groupe d'holonomieG 2 ou Spin(7). C.R. Acad. Sci. Paris262, 127–129 (1966)Google Scholar
  8. 8.
    Bryant, R.: Metrics with exceptional holonomy. Ann. Math.126, 525–576 (1987)Google Scholar
  9. 9.
    Bryant, R., Salamon, S.: On the construction of some complete metrics with exceptional holonomy. Duke Math. J.58, 829–850 (1989)CrossRefGoogle Scholar
  10. 10.
    Cahen, M., Gutt, S., Lemaire, L., Spindel, P.: Killing spinors. Bull. Soc. Math. Belg.38, 75–102 (1986)Google Scholar
  11. 11.
    Duff, M.J., Nilsson, B.E.W., Pope, C.N.: Kaluza-Klein supergravity. Phys. Rep.130, 1–142 (1986)CrossRefGoogle Scholar
  12. 12.
    Franc, A.: Spin structures and Killing spinors on lens spaces. J. Geom. Phys.4, 277–287 (1987).CrossRefGoogle Scholar
  13. 13.
    Friedrich, T.: Der erste Eigenwert des Dirac-Operators einer kompakten Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung. Math. Nach.97, 117–146 (1980)Google Scholar
  14. 14.
    Friedrich, T.: A remark on the first eigenvalue of the Dirac operator on 4-dimensional manifolds. Math. Nach.102, 53–56 (1981)Google Scholar
  15. 15.
    Friedrich, T.: Zur Existenz paralleler Spinorfelder über Riemannschen Mannigfaltigkeiten. Colloq. Math.44, 277–290 (1981)Google Scholar
  16. 16.
    Friedrich, T., Grunewald, R.: On the first eigenvalue of the Dirac operator on 6-dimensional manifolds. Ann. Glob. Anal. Geom.3, 265–273 (1985)CrossRefGoogle Scholar
  17. 17.
    Friedrich, T., Kath, I.: Einstein manifolds of dimension five with small first eigenvalue of the Dirac operator. J. Diff. Geom.29, 263–279 (1989)Google Scholar
  18. 18.
    Friedrich, T., Kath, I.: Variétés riemanniennes compactes de dimension 7 admettant des spineurs de Killing. C.R. Acad. Sci. Paris307, 967–969 (1988)Google Scholar
  19. 19.
    Friedrich, T., Kath, I.: 7-dimensional compact Riemannian manifolds with Killing spinors. Commun. Math. Phys.133, 543–561 (1990)CrossRefGoogle Scholar
  20. 20.
    Gallot, S.: Equations différentielles caractéristiques de la sphère. Ann. Sc. Ec. Norm. Sup.12, 235–267 (1979)Google Scholar
  21. 21.
    Gibbons, G.W., Page, D.N., Pope, C.N.: Einstein metrics onS 3, ℝ3 and ℝ4 bundles. Commun. Math. Phys.127, 529–553 (1990)CrossRefGoogle Scholar
  22. 22.
    Gray, A.: Vector cross products on manifolds. Trans. Am. Math. Soc.141, 465–504 (1969)Google Scholar
  23. 23.
    Gray, A.: Nearly Kähler manifolds. J. Diff. Geom.4, 283–309 (1970)Google Scholar
  24. 24.
    Gray, A.: Riemannian manifolds with geodesic symmetries of order 3. J. Diff. Geom.7, 343–369 (1972)Google Scholar
  25. 25.
    Gray, A.: The structure of nearly Kähler manifolds. Math. Ann.223, 233–248 (1976)CrossRefGoogle Scholar
  26. 26.
    Grunewald, R.: Six-dimensional Riemannian manifolds with a real Killing spinor. Ann. Glob. Anal. Geom.8, 43–59 (1990)CrossRefGoogle Scholar
  27. 27.
    Hijazi, O.: Caractérisation de la sphère par les premières valeurs propres de l'opérateur de Dirac en dimension 3, 4, 7 et 8. C.R. Acad. Sci. Paris303, 417–419 (1986)Google Scholar
  28. 28.
    Hitchin, N.: Harmonic spinors. Adv. Math.14, 1–55 (1974)CrossRefGoogle Scholar
  29. 29.
    Kreck, M., Stolz, S.: Some nondiffeomorphic homeomorphic homogeneous 7-manifolds with positive sectional curvature. J. Diff. Geom.33, 465–486 (1991)Google Scholar
  30. 30.
    van Nieuwenhuizen, P., Warner, N.P.: Integrability conditions for Killing spinors. Commun. Math. Phys.93, 277–284 (1984)CrossRefGoogle Scholar
  31. 31.
    O'Neill, B.: Semi-Riemannian geometry. New York: Acad. Press 1983Google Scholar
  32. 32.
    Rademacher, H.-B.: Generalized Killing spinors with imaginary Killing function and conformal fields. To appear in Proc. Conf. Anal. Glob. Diff. Geom., Berlin 1990, Springer Lecture NotesGoogle Scholar
  33. 33.
    Salamon, S.: Riemannian geometry and holonomy groups. London: Longman Scientific & Technical 1989Google Scholar
  34. 34.
    Wang, M.: Some examples of homogeneous Einstein manifolds in dimension 7. Duke Math. J.49, 23–28 (1982)CrossRefGoogle Scholar
  35. 35.
    Wang, M.: Parallel spinors and parallel forms. Ann. Glob. Anal. Geom.7, 59–68 (1989)CrossRefGoogle Scholar
  36. 36.
    Ziller, W.: Homogeneous Einstein metrics on spheres and projective spaces. Math. Ann.259, 351–358 (1982)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Christian Bär
    • 1
  1. 1.Mathematisches Institut der Universität BonnBonn 1Germany

Personalised recommendations