Communications in Mathematical Physics

, Volume 134, Issue 1, pp 197–207 | Cite as

Matrix integration and combinatorics of modular groups

  • C. Itzykson
  • J. -B. Zuber


Integration over Gaussian matrix ensembles was used to obtain the virtual Euler characteristics of mapping class groups. We present some simplifications in the combinatorial part of the calculation.


Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Harer, J., Zagier, D.: Invent. Math.85, 457–485 (1986)Google Scholar
  2. 2.
    Penner, R.C.: Bull. Am. Math. Soc.15, 73–77 (1986); J. Diff. Geom.27, 35–53 (1988)Google Scholar
  3. 3.
    't Hooft, G.: Nucl. Phys. B72, 461–473 (1974)Google Scholar
  4. 4.
    Brézin, E., Itzykson, C., Parisi, G., Zuber, J.-B.: Comm. Math. Phys.59, 35–51 (1978)Google Scholar
  5. 5.
    Bessis, D.: Commun. Math. Phys.69, 147–163 (1979)Google Scholar
  6. 6.
    Bessis, D., Itzykson, C., Zuber, J.-B.: Adv. Appl. Math.1, 109–157 (1980)Google Scholar
  7. 7.
    Itzykson, C., Zuber, J.-B.: J. Math. Phys.21, 411–421 (1980)Google Scholar
  8. 8.
    Ivanov, N.V.: Usp. Mat. Nauk42, 49–91 (1987); Russian Math. Surv.42, 55–107 (1987)Google Scholar
  9. 9.
    Weyl, H.: The classical groups. Princeton, NJ: Princeton University Press 1946Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • C. Itzykson
    • 1
  • J. -B. Zuber
    • 1
  1. 1.Service de Physique Théorique de SaclayGif-Sur-Yvette CedexFrance

Personalised recommendations