Communications in Mathematical Physics

, Volume 134, Issue 1, pp 65–77 | Cite as

An application of Aomoto-Gelfand hypergeometric functions to theSU(n) Knizhnik-Zamolodchikov equation

  • Atsushi Matsuo


Solutions to the Knizhnik-Zamolodchikov equation for Verma modules of the Lie algebra\(\mathfrak{s}\mathfrak{l}(n + 1,\mathbb{C})\) are explicitly given by certain integrals called Aomoto-Gelfand hypergeometric functions.


Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aomoto, K.: On the structure of integrals of power product of linear functions. Sci. Papers Coll. Gen. Ed. Univ. Tokyo27, 49–61 (1977)Google Scholar
  2. 2.
    Aomoto, K.: Gauss-Manin connection of integrals of difference products. J. Math. Soc. Jpn39, 191–208 (1987)Google Scholar
  3. 3.
    Belavin, A. A., Polyakov, A. N., Zamolodchikov, A. B.: Infinite conformal symmetries in two dimensional quantum field theory. Nucl. Phys.B241, 333–380 (1984)Google Scholar
  4. 4.
    Christe, P., Flume, R.: The four point correlations of all primary operators of thed=2 conformally invariantSU(2) σ-model with Wess-Zumino term. Nucl. Phys.B282, 466–494 (1987)Google Scholar
  5. 5.
    Christe, P.: Structure and applications of the Wess-Zumino-Witten model in two dimensions, Ph. D. thesis, Bonn University 1986Google Scholar
  6. 6.
    Date, E., Jimbo, M., Matsuo, A., Miwa, T.: Hypergeometric type integrals and the\(\mathfrak{s}\mathfrak{l}(2,\mathbb{C})\) Knizhnik-Zamolodchikov equation. In: Yang-Baxter Equations, Conformal Invariance and Integrability in Statistical Mechanics and Field Theory, World ScientificGoogle Scholar
  7. 7.
    Feigin, B., Frenkel, E.: Representations of affine Kac-Moody algebras and bosonization, preprint (1989); Representations of affine Kac-Moody algebras, bosonization and resolutions, preprint (1989); Affine Kac-Moody algebras and semi-infinite flag manifolds, preprint (1989)Google Scholar
  8. 8.
    Knizhnik, V. G., Zamolodchikov, A. B.: Current algebra and Wess-Zumino models in two dimensions. Nucl. Phys.B247, 83–103 (1984)Google Scholar
  9. 9.
    Schechtman, V. V., Varchenko, A. N.: Integral representation ofN-point conformal correlators in the WZW model, preprint (1989)Google Scholar
  10. 10.
    Tsuchiya, A., Kanie, Y.: Fock space representation of the Virasoro algebra. Publ. RIMS Kyoto University22, 259–327 (1986)Google Scholar
  11. 11.
    Tsuchiya, A., Kanie, Y.: Vertex operators in conformal field theory onP 1 and monodromy representations of braid groups. Adv. Stud. Pure. Math.16, 297–372 (1988)Google Scholar
  12. 12.
    Vasil'ev, V. A., Gel'fand, I. M., Zelevinskii, A. V.: General hypergeometric functions on complex Grassmannians. Funct. Anal. Prilozhen.21, 19–31 (1987)Google Scholar
  13. 13.
    Zamolodchikov, A. B., Fateev, V. A.: Operator algebra and correlation functions in the two-dimensionalSU(2)×SU(2) chiral Wess-Zumino model. Sov. J. Nucl. Phys.43, 657–664 (1986); Yad. Fiz.43, 1031–1044 (1986)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Atsushi Matsuo
    • 1
  1. 1.Research Institute for Mathematical SciencesKyoto UniversityKyotoJapan

Personalised recommendations