Advertisement

Communications in Mathematical Physics

, Volume 134, Issue 1, pp 29–63 | Cite as

Local quasiequivalence and adiabatic vacuum states

  • Christian Lüders
  • John E. Roberts
Article

Abstract

The problem of determining the physically relevant states acquires a new dimension in curved spacetime where there is, in general, no natural definition of a vacuum state. It is argued that there is a unique local quasiequivalence class of physically relevant states and it is shown how this class can be specified for the free Klein-Gordon field on a Robertson-Walker spacetime by using the concept of an adiabatic vacuum state. Any two adiabatic vacuum states of order two are locally quasiequivalent.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Vacuum State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Haag, R., Narnhofer, H., Stein, U.: On quantum field theory in gravitational background. Commun. Math. Phys.94, 219–238 (1984)Google Scholar
  2. 2.
    Haag, R., Kastler, D.: An algebraic approach to quantum field theory. J. Math. Phys.5, 848–861 (1964).Google Scholar
  3. 3.
    Dimock, J.: Algebras of local observables on a manifold. Commun. Math. Phys.77, 219–228 (1980)Google Scholar
  4. 4.
    Araki, H., Yamagami, S.: On quasiequivalence of quasifree states of the canonical commutation relations. Publ. RIMS, Kyoto18, 283–338 (1982)Google Scholar
  5. 5.
    Najmi, A. H., Ottewill, A. C.: Quantum states and the Hadamard form. III. Constraints in cosmological space-times. Phys. Rev.D32, 1942–1948 (1985).Google Scholar
  6. 6.
    Bernard, D.: Hadamard singularity and quantum states in Bianchi type-I space-time. Phys. Rev.D33, 3581–3589 (1986)Google Scholar
  7. 7.
    Mazzitelli, F. D., Paz, J. P., Castagnino, M. A.: Cauchy data and Hadamard singularities in time-dependent backgrounds. Phys. Rev.D36, 2994–3001Google Scholar
  8. 8.
    Fulling, S. A., Narcowich, F. J., Wald, R. M.: Singularity structure of the two-point function in quantum field theory in curved spacetime II. Ann. Phys.136, 243–272 (1981)Google Scholar
  9. 9.
    Kay, B. S.: Linear spin-zero quantum fields in external gravitational and scalar fields I. Commun. Math. Phys.62, 55–70 (1978)Google Scholar
  10. 10.
    Gelfand, I. M., Graev, M. I., Vilenkin, N. J.: Generalized functions, vol. 5. New York, London: Academic Press 1966Google Scholar
  11. 11.
    Vilenkin, N. J.: Special functions and the theory of group representations. Providence, Rhode Island: American Mathematical Society 1968Google Scholar
  12. 12.
    Dixmier, J.:C *-Algebras. Amsterdam, New York, Oxford: North-Holland 1977Google Scholar
  13. 13.
    Parker, L.: Quantized fields and particle creation in expanding universes I. Phys. Rev.183, 1057–1068 (1969)Google Scholar
  14. 14.
    Parker, L., Fulling, S. A.: Adiabatic regularization of the energy-momentum tensor of a quantized field in homogeneous spaces. Phys. Rev.D9, 341–354 (1974)Google Scholar
  15. 15.
    Buchholz, D.: Product states for local algebras. Commun. Math. Phys.36, 287–304 (1974)Google Scholar
  16. 16.
    Hörmander, L.: The analysis of linear partial differential operators I. Berlin, Heidelberg, New York: Springer 1983Google Scholar
  17. 17.
    Araki, H.: Von Neumann algebras of local observables for the free scalar field. J. Math. Phys.5, 1–13 (1964).Google Scholar
  18. 18.
    Hörmander, L.: Linear partial differential operators. Berlin, Heidelberg, New York: Springer 1976Google Scholar
  19. 19.
    Trèves, F.: Basic linear partial differential equations. New York, San Francisco, London: Academic Press 1975Google Scholar
  20. 20.
    Palais, R. S.: Seminar on the Atiyah-Singer index theorem. Princeton, New Jersey: Princeton University Press 1965Google Scholar
  21. 21.
    Fell, J. M. G.: The dual spaces ofC *-algebras. Trans. Am. Math. Soc.94, 365–403 (1960)Google Scholar
  22. 22.
    Fell, J. M. G.: The structure of algebras of operator fields. Acta Math.106, 233–280 (1961)Google Scholar
  23. 23.
    Stein, E. M.: Singular integrals and differentiability properties of functions. Princeton, New Jersey: Princeton University Press 1970Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Christian Lüders
    • 1
  • John E. Roberts
    • 1
  1. 1.Fachbereich PhysikUniversität OsnabrückOsnabrückGermany

Personalised recommendations