Advertisement

Communications in Mathematical Physics

, Volume 138, Issue 3, pp 583–605 | Cite as

Topological representations of the quantum groupUq(sl2)

  • G. Felder
  • C. Wieczerkowski
Article

Abstract

We define a topological action of the quantum groupUq(sl2) on a space of homology cycles with twisted coefficients on the configuration space of the punctured disc. This action commutes with the monodromy action of the braid groupoid, which is given by theR-matrix ofUq(sl2).

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dotsenko, V.S., Fateev, V.A.: Conformal algebra and multipoint correlation functions in 2d statistical models. Nucl. Phys.B240 [FS12], 312–348 (1984)Google Scholar
  2. 2.
    Zamolodchikov, A.B., Fateev, V.A.: Operator algebra and correlation functions in the two-dimensionalSU(2)×SU(2)chiral Wess-Zumino model. Sov. J. Nucl. Phys.43, 657–664 (1986)Google Scholar
  3. 3.
    Gervais, J.-L., Neveu, A.: Novel triangle relation and absence of tachyons in Liouville string field theory. Nucl. Phys.B 238, 125–141 (1984)Google Scholar
  4. 4.
    Tsuchyia, A., Kanie, Y.: Vertex operators in the conformal field theory ofP 1 and monodromy representations of the braid group. Adv. Stud. Pure Math.16, 297–372 (1988)Google Scholar
  5. 5.
    Felder, G., Fröhlich, J., Keller, G.: Braid matrices and structure constants of minimal, models. Commun. Math. Phys.124, 647–664 (1989)Google Scholar
  6. 6.
    Lawrence, R.J.: A topological approach to representations of the Iwahori-Hecke algebra. Harvard preprint (1990)Google Scholar
  7. 7.
    Pasquier, V., Saleur, H.: Common structures between finite systems and conformal field theories through quantum groups. Nucl. Phys.B 330, 523–556 (1990)Google Scholar
  8. 8.
    Ganchev, A., Petkova, V.:U q(sl(2)) invariant operators and minimal theories fusion matrices. Phys. Lett.B 233, 374–382 (1989)Google Scholar
  9. 9.
    Bouwknegt, P., McCarthy, J., Pilch, K.: Free field realization of WZNW-models; BRST complex and its quantum group structure. Phys. Lett.B 234, 297–303 (1990)Google Scholar
  10. 10.
    Gómez, C., Sierra, G.: Quantum group meaning of the Coulomb gas. Phys. Lett. B240, 149–157 (1990); The quantum symmetry of rational conformal field theory. Geneva preprint UGVA-DPT 1990/04-669Google Scholar
  11. 11.
    Felder, G., Silvotti, R.: Free field representation of minimal models on a Riemann surface. Phys. Lett.B 231, 411–416 (1989)Google Scholar
  12. 12.
    Felder, G.: Minimal, models on a Riemann surface. In: Proceedings of the ICTP conference on “New developments in conformal field theory,” Ranjbar-Daemi, S., Zuber, J.-B. (eds.). Singapore: World Scientific 1990Google Scholar
  13. 13.
    Gawedzki, K.: Geometry of Wess-Zumino-Witten models of conformal field theory. IHES preprint P/90/46 (1990)Google Scholar
  14. 14.
    Schechtman, V.V., Varchenko, A.N.: Quantum groups and homology of local systems. Manuscript, Moscow (1990); Arrangements of hyperplanes and Lie algebra homology. Preprint, Moscow (1990)Google Scholar
  15. 15.
    Drinfeld, V.G.: Quantum groups. Proceedings of the International Congress of Mathematicians, pp. 798–820. New York: Academic Press 1986Google Scholar
  16. 16.
    Reshetikhin, N.Yu., Turaev, V.G.: Invariants of 3-manifolds via link polynomials and quantum group. MSRI preprint (1989)Google Scholar
  17. 17.
    Fröhlich, J., Kerler, T.: On the role of quantum groups in low dimensional local quantum field theory. ETH preprint (to appear)Google Scholar
  18. 18.
    Lusztig, G.: Finite dimensional Hopf algebras arising from quantum groups. J. Am. Mat. Soc.3, 257–296 (1990)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • G. Felder
    • 1
  • C. Wieczerkowski
    • 1
  1. 1.Institut für Theoretische PhysikETH-HönggerbergZürichSwitzerland

Personalised recommendations