Advertisement

Communications in Mathematical Physics

, Volume 138, Issue 3, pp 569–581 | Cite as

Local conformal field algebras

  • Denis Juriev
Article

Abstract

The local conformal field algebras with the multiplication corresponding to the regularized pointwise product of fields in the operator algebras of the quantum conformal field theory are investigated.

Keywords

Neural Network Statistical Physic Field Theory Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Witten, E.: Topological quantum field theory. Commun. Math. Phys. 117, 353–386 (1988)Google Scholar
  2. 2.
    Witten, E.: Topological sigma models. Commun. Math. Phys. 118, 411–449 (1988)Google Scholar
  3. 3.
    Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys.121, 351–399 (1989)Google Scholar
  4. 4.
    Labastida, J. M. P.: Morse theory interpretation of topological quantum field theory. Commun. Math. Phys.123, 641–658 (1989)Google Scholar
  5. 5.
    Belavin, A. A., Polyakov, A. M., Zamolodchikov, A. B.: Infinite conformal symmetry in twodimensional quantum field theory. Nucl. Phys B241, 333–380 (1984)Google Scholar
  6. 6.
    Cardy, J. L.: Operator content of two-dimensional conformally invariant theories. Nucl. Phys. B270, 186–204 (1986)Google Scholar
  7. 7.
    Anderson, G., Moore, G.: Rationality in conformal field theory. Commun. Math. Phys.117, 441–450 (1988)Google Scholar
  8. 8.
    Moore, G., Seiberg, N.: Classical and quantum conformal field theory. Commun. Math. Phys.123, 177–254 (1989)Google Scholar
  9. 9.
    Friedan, D., Shenker, S.: The analytic geometry of two-dimensional conformal field theory. Nucl. Phys. B281, 509–545 (1987)Google Scholar
  10. 10.
    Manin, Yu. I.: Critical dimensions of string theories and dualizing sheaf on the (super)curves moduli space. Funkt. anal. i. ego pril.20 (3), 88–89 (1986)Google Scholar
  11. 11.
    Beilinson, A. A., Manin, Yu. I., Schechtman, V. V.: Sheaves of Virasoro and Neveu-Schwarz algebras. Lect. Notes Math. vol.1289, pp. 52–66. Berlin, Heidelberg, New York: Springer 1987Google Scholar
  12. 12.
    Beilinson, A. A., Schechtman, V. V.: Determinant bundles and Virasoro algebra. Commun. Math. Phys.118, 651–701 (1988)Google Scholar
  13. 13.
    Koncevich, M. L.: The Virasoro algebra and the Teichmüller spaces. Funkt. anal. i. ego pril.21 (2), 78–79 (1987)Google Scholar
  14. 14.
    Tukia, P.: On infinite dimensional Teichmüller spaces. Ann. Acad. Sci. Fenn. Ser. A1 Math.3, 343–372 (1977)Google Scholar
  15. 15.
    Lehto, O.: Univalent functions and Teichmüller spaces. Berlin, Heidelberg, New York: Springer 1986Google Scholar
  16. 16.
    Kirillov, A. A.: A Kähler structure onK-orbits of the group of diffeomorphisms of a circle. Funkt. anal. i. ego pril.21 (2), 42–45 (1987)Google Scholar
  17. 17.
    Kirillov, A. A., Juriev, D. V.: The Kähler geometry on the infinite dimensional homogeneous manifoldM=Diff+(S 1)/Rot(S 1). Funkt. anal. i ego pril.20(4), 79–80 (1986)Google Scholar
  18. 18.
    Kirillov, A. A., Juriev, D. V.: The Kähler geometry on the infinite dimensional homogeneous spaceM=Diff+(S 1)/Rot(S 1). Funkt. anal.i. ego pril.21 (4) 35–46 (1987)Google Scholar
  19. 19.
    Kirillov, A. A., Juriev, D. V.: The highest weight representations of the Virasoro algebra by the orbit method. J. Geom. Phys., I. M. Gelfand vol. (1988)Google Scholar
  20. 20.
    Juriev, D. V.: The model of the Verma modules over the Virasoro algebra. Algebra i analiz2(2), 209–226 (1990)Google Scholar
  21. 21.
    Dixmier, J.: Algèbres enveloppantes. Paris: Gauthier-Villars 1974Google Scholar
  22. 22.
    Feigin, B. L., Fuchs, D. B.: Skew-symmetric differential operators on the line and the Verma modules over the Virasoro algebra. Funkt. anal. i ego pril.16(2), 47–63 (1982)Google Scholar
  23. 23.
    Higher transcendental functions. New York: McGraw-Hill 1955Google Scholar
  24. 24.
    Gelfand, I. M., Zelevinsky, A. V., Serganova, V. V.: The general hypergeometric functions connected with the pair of the homogeneous spaces. Dokl. Akad. Nauk SSSR304(5), 1044–1049 (1989)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Denis Juriev
    • 1
  1. 1.TFFA, Department of MathematicsMoscow State UniversityMoscowUSSR

Personalised recommendations