Communications in Mathematical Physics

, Volume 138, Issue 3, pp 507–519 | Cite as

Particle scattering in Euclidean Lattice Field Theories

  • J. C. A. Barata
  • K. Fredenhagen


A Haag-Ruelle Scattering Theory for Euclidean Lattice Field Theories is developed.


Neural Network Statistical Physic Field Theory Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haag, R.: Quantum field theories with composite particles and asymptotic conditions. Phys. Rev.112, 669–673 (1958)Google Scholar
  2. 2.
    Haag, R.: The framework of quantum field theory. (1959) Supplemento al vol. XIV, serie X del Nuovo Cimmento, 1563Google Scholar
  3. 3.
    Ruelle, D.: On the asymptotic condition in quantum field theory. Helv. Phys. Acta35, 147–163 (1962)Google Scholar
  4. 4.
    Hepp, K.: On the connection between the LSZ and the Wightman quantum field theory. Commun. Math. Phys.1, 95–111 (1965)Google Scholar
  5. 5.
    Hepp, K.: On the connection between the LSZ and the Wightman quantum field theory. In: Axiomatic field theory. Brandeis 1965. Chretien, M., Deser, S. (eds.). New York: Gordon and Breach 1966Google Scholar
  6. 6.
    Araki, H., Haag, R.: Collision cross sections in terms of local observables. Commun. Math. Phys.4, 77–91 (1967)Google Scholar
  7. 7.
    Fredenhagen, K.: On the existence of the real time evolution in Euclidean lattice gauge theories. Commun. Math. Phys.101, 579–587 (1985)Google Scholar
  8. 8.
    Lehmann, H., Symanzik, K., Zimmermann, W.: Zur Formulierung Quantisierter Feldtheorien. Il Nuovo CimentoI, 205–225 (1955)Google Scholar
  9. 9.
    Osterwalder, K., Schrader, R.: Axioms for Euclidean Green's functions. Commun. Math. Phys.31, 83–112 (1973)Google Scholar
  10. 10.
    Osterwalder, K., Schrader, R.: Axioms for Euclidean Green's functions. II. Commun. Math. Phys.42, 281–305 (1975)Google Scholar
  11. 11.
    Barata, J.C.A., Fredenhagen, K.: Charged particles in ℤ2 gauge theories. Commun. Math. Phys.113, 403–417 (1987)Google Scholar
  12. 12.
    Buchholz, D.: Harmonic analysis of local operators. Commun. Math. Phys.129, 631–641 (1989)Google Scholar
  13. 13.
    Lüscher, M.: Streutheorie für euklidische skalare Feldtheorien auf einem Raumzeitgitter. Unpublished notes (1985)Google Scholar
  14. 14.
    Lüscher, M.: Selected topics in lattice field theory. Desy-preprint 88-156. “Lectures given at the Summer School ‘Fields, Strings, and Critical Phenomena’, Les Houches, France (1988)”Google Scholar
  15. 15.
    Barata, J.C.A.: Scattering theory for Euclidean lattice field theories. PhD Thesis, F.U. Berlin, 1989Google Scholar
  16. 16.
    Reed, M., Simon, B.: Methods of modern mathematical physics. Scattering theory. Vol. III. New York: Academic Press 1972–1979Google Scholar
  17. 17.
    Fox, L., Parker, I.B.: Chebishev polynomials in numerical analysis. Oxford: Oxford University Press (1969)Google Scholar
  18. 18.
    Glimm, J., Jaffe, A.: Quantum Physics. A Functional Integral Point of View. Second Edition. Berlin, Heidelberg, New York: Springer 1987Google Scholar
  19. 19.
    Barata, J.C.A.: Scattering states of charged particles in the ℤ2 Gauge Higgs model, in preparationGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • J. C. A. Barata
    • 1
  • K. Fredenhagen
    • 2
  1. 1.Instituto de Física a Universidade de São PauloSão PauloBrazil
  2. 2.Fachbereich Physik, Institut für Theorie der ElementarteilchenFreie Universität BerlinBerlin 33FRG

Personalised recommendations