Communications in Mathematical Physics

, Volume 138, Issue 3, pp 437–449 | Cite as

On the origin of integrability in matrix models

  • Emil J. Martinec


The matrix integrals involved in 2d lattice gravity are studied at finiteN. The integrable systems that arise in the continuum theory are shown to result directly from the formulation of the matrix integrals in terms of orthogonal polynomials. The partition function proves to be a tau function of the Toda lattice hierarchy. The associated linear problem is equivalent to finding the polynomial basis which diagonalizes the partition function. The cases of one Hermitian matrix, one unitary matrix, and Hermitian matrix chains all fall within the Toda framework.


Neural Network Partition Function Nonlinear Dynamics Unitary Matrix Integrable System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brezin, E., Kazakov, V.: Exactly solvable field theories of closed strings. Phys. Lett.236B, 144 (1990); Douglas, M., Shenker, S.: Strings in less than one dimension. Nucl. Phys.B335, 635 (1990)Google Scholar
  2. 2.
    Gross, D., Migdal, A.: Nonperturbative two-dimensional quantum gravity. Phys. Rev. Lett.64, 127 (1990)Google Scholar
  3. 3.
    Banks, T., Douglas, M., Seiberg, N., Shenker, S.: Microscopic and macroscopic loops in nonperturbative 2d quantum gravity. Phys. Lett.238B, 279 (1990)Google Scholar
  4. 4.
    Douglas, M.: Strings in less than one dimension and the generalized KdV hierarchies. Phys. Lett.238B, 176 (1990)Google Scholar
  5. 5.
    Fukuma, M., Kawai, H., Nakayama, R.: Continuum Schwinger-Dyson equations and universal structures in 2d quantum gravity. Tokyo preprint UT-562 (May 1990); Dijkgraaf, R., Verlinde, E., Verlinde, H.: Loop equations and Virasoro constraints in nonperturbative 2d quantum gravity. Princeton preprint PUPT-1184 (May 1990)Google Scholar
  6. 6.
    Seiberg, N.: Notes on quantum Liouville theory and quantum gravity. Rutgers preprint RU-90-29 (June 1990)Google Scholar
  7. 7.
    Das, S. R., Jevicki, A.: String field theory and physical interpretation ofd=1 strings. Brown preprint HET-750 (1990)Google Scholar
  8. 8.
    Shenker, S.: The strength of nonperturbative effects in string theory. Rutgers preprint RU-90-47 (August 1990)Google Scholar
  9. 9.
    Witten, E.: Two-dimensional gravity and intersection theory on moduli space. IAS preprint IASSNS-HEP-90/45 (May 1990)Google Scholar
  10. 10.
    Gerasimov, A., Marshakov, A., Mironov, A., Morozov, A., Orlov, A.: Matrix models of 2d gravity and Toda theory. ITEP preprint (July 1990)Google Scholar
  11. 11.
    Bessis, D., Itzykson, C., Zuber, J.-B.: Quantum field theory techniques in graphical enumeration. Adv. Appl. Math.1, 109 (1980)Google Scholar
  12. 12.
    Moser, J.: Finitely many mass points on the line under the influence of an exponential potential—an integrable system. In: Lecture Notes in Physics, vol.38. Moser, J. (ed.) Berlin, Heidelberg, New York: Springer 1975Google Scholar
  13. 13.
    Adler, M.: On a trace functional for formal pseudo-differential operators and the symplectic structure of the KdV equations. Invent. Math.50, 219 (1979)Google Scholar
  14. 14.
    Kostant, B.: The solution to a generalized Toda lattice and representation theory. Adv. Math.34, 195 (1979)Google Scholar
  15. 15.
    Olshanetsky, M., Perelomov, A.: Classical integrable systems related to Lie algebras. Phys. Rep.71, 313 (1981)Google Scholar
  16. 16.
    Flaschka, H.: Introduction to Integrable Systems. Lectures at the AMS Symposium on Theta Functions, Bowdoin 1978, unpublishedGoogle Scholar
  17. 17.
    Ueno, K., Takasaki, K.: Toda lattice hierarchy. In: Advanced Studies in Pure Math 4, Group Representations and Differential Equations (1984)Google Scholar
  18. 18.
    David, F.: Loop equations and nonperturbative effects in 2d quantum gravity. Saclay preprint SPhT/90-043 (1990)Google Scholar
  19. 19.
    Myers, R., Periwal, V.: Exact solution of self-dual unitary matrix models. ITP preprint NSF-ITP-90-73 (1990)Google Scholar
  20. 20.
    Douglas, M., Seiberg, N., Shenker, S.: Flow and instability in quantum gravity. Rutgers preprint (April 1990)Google Scholar
  21. 21.
    Moore, G.: Geometry of the string equations. Yale preprint (May 1990)Google Scholar
  22. 22.
    Itzykson, C., Zuber, J.-B.: The planar approximation. II. J. Math. Phys.21, 411 (1980); Chadha, S., Mahoux, G., Mehta, M. L.: A method of integration over matrix variables. J. Phys.A14, 579 (1981)Google Scholar
  23. 23.
    Leznov, A., Saveliev, M.: Representation of zero curvature for the system of non-linear partial differential equations\(x_{\alpha ,z\bar z} = (e^{k \cdot x} )_\alpha \) and its Integrability. Lett. Math. Phys.3, 489 (1979)Google Scholar
  24. 24.
    Distler, J.: 2d quantum gravity, topological field theory, and multicritical matrix models. Princeton preprint PUPT-1161 (1989)Google Scholar
  25. 25.
    Banks, T., Martinec, E.: The renormalization group and string field theory. Nucl. Phys.B294, 733 (1987)Google Scholar
  26. 26.
    Eguchi, T., Kawai, H.: Reduction of the dynamical degrees of freedom in the large-N gauge theory. Phys. Rev. Lett.48, 1063 (1982); Bhanot, G., Heller, U., Neuberger, H.: The quenched Eguchi-Kawai model. Phys. Lett.113B, 47 (1982)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Emil J. Martinec
    • 1
  1. 1.Enrico Fermi Institute and Department of PhysicsUniversity of ChicagoChicagoUSA

Personalised recommendations