Skip to main content
Log in

Fredholm determinants, differential equations and matrix models

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Orthogonal polynomial random matrix models ofN×N hermitian matrices lead to Fredholm determinants of integral operators with kernel of the form (ϕ(x)ψ(y)−ψ(x)ϕ(y))/x−y. This paper is concerned with the Fredholm determinants of integral operators having kernel of this form and where the underlying set is the union of intervals\(J = \cup _{j = 1}^m (a_{2j - 1 ,{\text{ }}} a_{2j} )\). The emphasis is on the determinants thought of as functions of the end-pointsa k.

We show that these Fredholm determinants with kernels of the general form described above are expressible in terms of solutions of systems of PDE's as long as ϕ and ψ satisfy a certain type of differentiation formula. The (ϕ, ψ) pairs for the sine, Airy, and Bessel kernels satisfy such relations, as do the pairs which arise in the finiteN Hermite, Laguerre and Jacobi ensembles and in matrix models of 2D quantum gravity. Therefore we shall be able to write down the systems of PDE's for these ensembles as special cases of the general system.

An analysis of these equations will lead to explicit representations in terms of Painlevé transcendents for the distribution functions of the largest and smallest eigenvalues in the finiteN Hermite and Laguerre ensembles, and for the distribution functions of the largest and smallest singular values of rectangular matrices (of arbitrary dimensions) whose entries are independent identically distributed complex Gaussian variables.

There is also an exponential variant of the kernel in which the denominator is replaced bye bx−eby, whereb is an arbitrary complex number. We shall find an analogous system of differential equations in this setting. Ifb=i then we can interpret our operator as acting on (a subset of) the unit circle in the complex plane. As an application of this we shall write down a system of PDE's for Dyson's circular ensemble ofN×N unitary matrices, and then an ODE ifJ is an arc of the circle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barouch, E., McCoy, B.M., Wu, T.T.: Zero-field susceptibility of the two-dimensional Ising model nearT c. Phys. Rev. Letts.31, 1409–1411 (1973); Tracy, C., McCoy, B.M.: Neutron scattering and the correlation functions of the Ising model nearT c. Phys. Rev. Letts.31, 1500–1504 (1973)

    Article  Google Scholar 

  2. Basor, E.L., Tracy, C.A., Widom, H.: Asymptotics of level spacing distributions for random matrices. Phys. Rev. Letts.69, 5–8 (1992)

    Article  Google Scholar 

  3. Bassom, A.P., Clarkson, P.A., Hicks, A.C., McLeod, J.B.: Integral equations and exact solutions for the fourth Painlevé transcendent. Proc. R. Soc. Lond. A437, 1–24 (1992)

    Google Scholar 

  4. Bauldry, W.C.: Estimates of asymmetric Freud polynomials. J. Approx. Th.63, 225–237 (1990)

    Article  Google Scholar 

  5. Bonan, S.S., Clark, D.S.: Estimates of the Hermite and the Freud polynomials. J. Approx. Th.63, 210–224 (1990)

    Article  Google Scholar 

  6. Bowick, M.J., Brézin, E.: Universal scaling of the tail of the density of eigenvalues in random matrix models. Phys. Letts.B268, 21–28 (1991)

    Article  Google Scholar 

  7. Brézin, E.: LargeN limit and discretized two-dimensional quantum gravity. In: Gross, D.J., Piran, T., Weinberg, S. (eds.) Two Dimensional Quantum Gravity and Random Surfaces, Singapore: World Scientific Publ., 1992 pp. 1–40

    Google Scholar 

  8. Brézin, E., Kazakov, V.A.: Exactly solvable field theories of closed strings. Phys. Letts.B236, 144–150 (1990)

    Article  Google Scholar 

  9. Chen, Y.: Private communication

  10. Clarkson, P.A., McLeod, J.B.: Integral equations and connection formulae for the Painlevé equations. In: Levi, D., Winternitz, P. (eds.) Painlevé Transcendents: Their Asymptotics and Physical Applications, New York: Plenum Press, 1992, pp. 1–31

    Google Scholar 

  11. David, F.: Non-perturbative effects in matrix models and vacua of two dimensional gravity. SPhT/92-159 preprint

  12. Douglas, M.R.: Strings in less than one dimension and the generalized KdV hierarchies. Phys. Letts.B238, 176–180 (1990)

    Article  Google Scholar 

  13. Douglas, M.R., Shenker, S.H.: Strings in less than one dimension. Nucl. Phys.B335, 635–654 (1990)

    Article  Google Scholar 

  14. Dyson, F.J.: Statistical theory of energy levels of complex systems, I, II, and III. J. Math. Phys.3, 140–156; 157–165; 166–175 (1962)

    Article  Google Scholar 

  15. Dyson, F.J.: Fredholm determinants and inverse scattering problems. Commun. Math. Phys.47, 171–183 (1976)

    Article  Google Scholar 

  16. Dyson, F.J.: The Coulomb fluid and the fifth Painlevé transcendent. IASSNSSHEP-92/43 preprint, to appear in the proceedings of a conference in honor of C.N. Yang. S.-T. Yau (ed.)

  17. Edelman, A.: Eigenvalues and condition numbers of random matrices. Ph.D. thesis, Mass. Inst. of Tech., 1989

  18. Erdélyi, A. (ed.): Higher Transcendental Functions,Vols. I and II New York: McGraw-Hill, 1953

    Google Scholar 

  19. Forrester, P.J.: The spectrum edge of random matrix ensembles. Nucl. Phys.B402, [FS], 709–728 (1993)

    Article  Google Scholar 

  20. Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series, and Products. Corrected and Enlarged Edition. San Diego: Academic, 1980

    Google Scholar 

  21. Gross, D.J., Migdal, A.A.: Nonperturbative two-dimensional quantum gravity. Phys. Rev. Letts.64, 127–130 (1990); A nonperturbative treatment of two-dimensional quantum gravity. Nucl. Phys.B340, 333–365 (1990)

    Article  Google Scholar 

  22. Its, A.R., Izergin, A.G., Korepin, V.E., Slavnov, N.A.: Differential equations for quantum correlation functions. Int. J. Mod. PhysicsB4, 1003–1037 (1990)

    Article  Google Scholar 

  23. Jimbo, M.: Monodromy problem and the boundary condition for some Painlevé equations. Publ. RIMS, Kyoto Univ.18, 1137–1161 (1982)

    Google Scholar 

  24. Jimbo, M., Miwa, T.: Monodromy preserving deformations of linear ordinary differential equations with rational coefficients. II. Physica2D, 407–448 (1981)

    Google Scholar 

  25. Jimbo, M., Miwa, T., Môri, Y., Sato, M.: Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent. Physica1D, 80–158 (1980)

    Google Scholar 

  26. McCoy, B.M., Tracy, C.A., Wu, T.T.: Painlevé functions of the third kind. J. Math. Phys.18, 1058–1092 (1977)

    Article  Google Scholar 

  27. Mahoux, G., Mehta, M.L.: Level spacing functions and nonlinear differential equations. J. Phys. I. France3, 697–715 (1993)

    Article  Google Scholar 

  28. Mehta, M.L.: Random Matrices. 2nd ed. San Diego: Academic, 1991

    Google Scholar 

  29. Mehta, M.L.: A non-linear differential equation and a Fredholm determinant. J. de Phys. I. France2, 1721–1729 (1992)

    Article  Google Scholar 

  30. Moore, G.: Matrix models of 2D gravity and isomonodromic deformation. Prog. Theor. Physics Suppl. No.102, 255–285 (1990)

    Google Scholar 

  31. Muttalib, K.A., Chen Y., Ismail, M.E.H., Nicopoulos, V.N.: A new family of unitary random matrices. Phys. Rev. Lett.71, 471–475 (1993)

    Article  Google Scholar 

  32. Nagao, T., Wadati, M.: Correlation functions of random matrix ensembles related to classical orthogonal polynomials. J. Phys. Soc. Japan60, 3298–3322 (1991)

    Article  Google Scholar 

  33. Okamoto, K.: Studies on the Painlevé equations II. Fifth Painlevé equationP v. Japan. J. Math.13, 47–76 (1987)

    Google Scholar 

  34. Okamoto, K.: Studies on the Painlevé equations III. Second and Fourth Painlevé Equations,P II andP IV. Math. Ann.275, 221–255 (1986)

    Article  Google Scholar 

  35. Okamoto, K.: Studies on the Painlevé equations IV. Third Painlevé equationP III. Funkcialaj Ekvacioj30, 305–332 (1987)

    Google Scholar 

  36. Porter, C.E.: Statistical Theory of Spectra: Fluctuations. New York: Academic, 1965

    Google Scholar 

  37. Tracy, C.A., Widom, H.: Introduction to random matrices. In: Geometric and Quantum Aspects of Integrable Systems. G. F. Helminck (ed.) Lecture Notes in Physics, Vol. 424, Berlin, Heidelberg, New York: Springer, 1993, pp. 407–424

    Google Scholar 

  38. Tracy, C.A., Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys.159, 151–174 (1994)

    Google Scholar 

  39. Tracy, C.A., Widom, H.: Level-spacing distributions and the Bessel kernel. Commun. Math. Phys.161, 289–309 (1994)

    Article  Google Scholar 

  40. Widom, H.: The asymptotics of a continuous analogue of orthogonal polynomials. To appear in J. Approx. Th.

  41. Wu, T.T., McCoy, B.M., Tracy, C.A., Barouch, E.: Spin-spin correlation functions of the two-dimensional Ising model: Exact theory in the scaling region. Phys. Rev.B13, 316–374 (1976)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. Jimbo

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tracy, C.A., Widom, H. Fredholm determinants, differential equations and matrix models. Commun.Math. Phys. 163, 33–72 (1994). https://doi.org/10.1007/BF02101734

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02101734

Keywords

Navigation