Skip to main content
Log in

Discrete Magnetic Laplacian

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a 2-dimensional discrete operator which we call the Discrete Magnetic Laplacian (DML); it is an analogue of the magnetic Schrödinger operator. It follows from well known arguments that DML has the same spectrum (as a subset inR) as the Almost Mathieu operator (AM). They also have the same Integrated Density of States (IDS) which is known to be continuous. We show that DML is an element in a II1-factor and its IDS can be expressed through the trace in the II1-factor. It follows that DML never has anyL 2-eigenfunctions (i.e. has no point spectrum). Then we formulate a natural algebraic conjecture which implies that the spectrum of DML (hence the spectrum of AM) is a Cantor set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [A-A] Aubry, S., André, G.: Analyticity breaking and the Anderson localization in incommensurate lattices. Ann. Israel Phys. Soc.3, 133–164 (1980)

    Google Scholar 

  • [A-M-S] Avron, J.E., van Mouche, P., Simon, B.: On the measure of the spectrum for the almost Mathieu operator. Commun. Math. Phys.132, 103–118 (1990)

    Google Scholar 

  • [A-S] Avron, J.E., Simon, B.: Almost periodic Schrödinger operators, II. The density of states. Duke Math. J.50, 369–391 (1983)

    Google Scholar 

  • [A] Ya. Azbel: Energy spectrum of a conduction electron in a magnetic field. Soviet Phys. JETP19:3 (1964)

    Google Scholar 

  • [B1] Bellissard, J.: Almost periodicity in solid state physics andC *-algebras. In: C. Berg. B. Fuglede (eds.) The Harald Bohr Centenary, Mat.-Fys. Medd. Danske Vid. Selsk.,42:3, 35–75 (1989)

  • [B2] Bellissard, J.: Gap labelling theorems for Schrödinger operators. In: M. Waldschmidt (eds) From Number Theory to Physics, Berlin, Heidelberg, New York: Springer 1992 pp. 538–630

    Google Scholar 

  • [B3] Bellissard, J.: Le papillon de Hofstadter [d'après B. Helffer et J. Sjöstrand]. Séminaire Bourbaki, 1991–92, n 745, Novembre 1991

  • [B-L-T1] Bellissard, J., Lima, R., Testard, D.: A metal-insulator transition for the almost Mathieu operator. Commun. Math. Phys.88, 207–234 (1983)

    Google Scholar 

  • [B-L-T2] Bellissard, J., Lima, R., Testard, D.: Almost Periodic Schrödinger Operators. In: Mathematics+Physics. Lectures on recent results. Vol. 1, L. Streit (ed.) Singapore, Philadelphia; World Sci. Pub., 1985, pp. 1–64

    Google Scholar 

  • [B-S] Bellissard, J., Simon, B.: Cantor spectrum for the almost Mathieu equation. J. Funct. Anal.48, 408–419 (1982)

    Google Scholar 

  • [B-F] Buslaev, B., Fedotov, A.: Complex WKB method for Harper's equation. Institut Mittag-Leffler, Report No. 11, 1992/93

  • [C-L] Carmona, R., Lacroix, J.: Spectral theory of random Schrödinger operators. Boston: Birkhäuser, 1990

    Google Scholar 

  • [Ch] Chambers, W.: Linear network model for magnetic breakdown in two dimensions. Phys. Rev.A140, 135–143 (1965)

    Google Scholar 

  • [C-E-Y] Choi, M.-D., Elliott, G., Yui, N.: Gauss polynomials and the rotation algebra. Invent. Math.99, 225–246 (1990)

    Google Scholar 

  • [C] Chulaevsky, V.A.: Almost periodic operators and related non-linear integrable systems. Manchester: Manchester Univ. Press, 1989

    Google Scholar 

  • [C-D] Chulaevsky, V.A., Delyon, F.: Purely absolutely continuous spectrum for almost Mathieu operators. J. Stat. Phys.55, 1279–1284 (1989)

    Google Scholar 

  • [C-S] Craig, W., Simon, B.: Log Hölder continuity of the integrated density of states for stochastic Jacobi matrices. Commun. Math. Phys.90, 207–218 (1983)

    Google Scholar 

  • [C-F-K-S] Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger operators. Berlin, Heidelberg, New York: Springer, 1987

    Google Scholar 

  • [D] Delyon, F.: Absence of localization for the almost Mathieu equation. J. Phys.A20, L21-L23 (1987)

    Google Scholar 

  • [D-S] Delyon, F., Souillard, B.: Remark on the continuity of the density of states of ergodic finite difference operators. Commun. Math. Phys.94, 289–291 (1984)

    Google Scholar 

  • [D1] Dixmier, J.: Von Neumann algebras. Amsterdam; North-Holland, 1981

    Google Scholar 

  • [D2] Diximier, J.:C *-algebras. Amsterdam: North-Holland, 1982

    Google Scholar 

  • [E-H] Effros, E.G., Hahn, F.: Locally compact transformation groups andC *-algebras. Mem. Am. Math. Soc.75, (1967)

  • [E1] Eilliott, G.A.: Gaps in the spectrum of an almost periodic Schrödinger operator. C.R. Math. Rep. Acad. Sci. Canada4, 255–259 (1982)

    Google Scholar 

  • [E2] Eilliott, G.A.: Gaps in the spectrum of an almost periodic Schrödinger operator. II. In: H. Araki, E.G. Effros (eds.) Geometric Methods in Operator Algebras. Pitman Research Notes in Math. Series123, London: Longman, 1986 pp. 181–191

    Google Scholar 

  • [F-P] Figotin, A., Pastur, L.: The positivity of Lyapunov exponent and absence of absolutely continuous spectrum for almost Mathieu equation. J. Math. Phys.25, 774–777 (1984)

    Google Scholar 

  • [F-S-W] Fröhlich, J., Spencer, T., Witwer, P.: Localization for a class of one-dimensional quasi-periodic Schrödinger operators. Commun. Math. Phys.132, 5–25 (1990)

    Google Scholar 

  • [G] Gusev, A.I.: The density of states and other spectral invariants of self-adjoint elliptic operators with random coefficients. Math. USSR Sbornik33, 185–202 (1977)

    Google Scholar 

  • [Ha] Harper, P.G.: Single band motion of conduction electrons in a uniform magnetic field. Proc. Phys. Soc. LondonA68, 874–892 (1955)

    Google Scholar 

  • [H-K-S] Helffer, B., Kerdelhué, P., J. Sjöstrand: Le papillon de Hofstadter revisité. Mémoires de la S.M.F., no. 43,118:3, 1–87 (1990)

    Google Scholar 

  • [H-S1] Helffer, B., Sjöstrand, J.: Analyse semi-classique pour l'équation de Harper (avec application à l'équation de Schrödinger avec champ magnetique). Mémoires de la S.M.F. no. 34116:4, 1–113 (1988)

    Google Scholar 

  • [H-S2] Helffer, B., Sjöstrand, J.: Analyse semi-classique pour l'équation de Harper II. Comportement semi-classique près d'un rationnel. Mémoires de la S.M.F., no. 40,118, 1–139 (1990)

    Google Scholar 

  • [H-S3] Helffer, B., Sjöstrand, J.: Semi-classical analysis for Harper's equation III. Cantor structure of the spectrum. Mémoires de la S.M.F., no. 39,117:4, 1–124 (1989)

    Google Scholar 

  • [Ho] Hofstadter, D.: Energy levels and wave functions of Bloch electrons in rational and irrational magnetic. fields. Phys. Rev. B14, 2239–2249 (1976)

    Google Scholar 

  • [J] Jitomirskaya, S.Ya. Anderson localization for the almost Mathieu equation: A nonperturbative proof, Commun. Math. Phys., to appear

  • [J-M] Johnson, R., Moser, J.: The rotation number for almost periodic potentials. Commun. Math. Phys.84, 403–438 (1982)

    Google Scholar 

  • [L1] Last, Y.: A relation between a.c. spectrum of ergodic Jacobi matrices and the spectra of periodic approximants. Commun. Math. Phys.151, 183–192 (1993)

    Google Scholar 

  • [L2] Last, Y.: Zero measure spectrum for the almost Mathieu operator. Preprint, January 1993

  • [L-W] Last, Y., Wilkinson, M.: A sum rule for the dispersion relations of the rational Harper's equation. J. Phys.A25, 6123–6133 (1992)

    Google Scholar 

  • [M-Z] Mandelshtam, V.A., Zhitomirskaya, S.Ya.: 1D-quadiperiodic operators. Latent symmetries. Commun. Math. Phys.139, 589–604 (1991)

    Google Scholar 

  • [Mo] van Mouche, P.: The coexistence problem for the discrete Mathieu operator. Commun. Math. Phys.122, 23–24 (1989)

    Google Scholar 

  • [Mu] Murphy, G.J.:C *-algebras and operator theory. Boston e.a.: Academic Press, 1990

    Google Scholar 

  • [N] Novikov, S.P.: Two dimensional operators in periodic fields. J. Soviet Math.28:1, 1–20 (1985)

    Google Scholar 

  • [Pa] Pastur, L. A.: Spectra of random self-adjoint operators. Russ. Math. Surv.28, 1–67 (1973)

    Google Scholar 

  • [P-F] Pastur, L., Figotin, A.: Spectra of random and almost periodic operators. Berlin, Heidelberg, New York: Springer, 1992

    Google Scholar 

  • [Pe] Pedersen, G.K.:C *-algebras and their automorphism groups. London: Academic Press, 1979

    Google Scholar 

  • [P] Peierls, R.: Zur Theorie des Diamagnetismus von Leitungselektronen. Z. Phys.80, 763–791 (1933)

    Google Scholar 

  • [P-V] Pimsner, M., Voiculescu, D.: Imbedding the irrational rotationC *-algebra into aAF-algebra. J. Oper. Theory4, 201–210 (1980)

    Google Scholar 

  • [Po] Power, S.C.: Simplicity ofC *-algebras of minimal dynamical systems. J. Lond. Math. Soc.18, 534–538 (1978)

    Google Scholar 

  • [R1] Riedel, N.: Point spectrum for the almost Mathieu equation. C.R. Math. Rep. Acad. Sci. Canada, Vol. VIII, No. 6, 399–403 (1986)

    Google Scholar 

  • [R2] Riedel, N.: Almost Mathieu operators and rotationC *-algebras. Proc. Lond. Math. Soc.56:3, 281–302 (1988)

    Google Scholar 

  • [R3] Riedel, N.: On spectral properties of almost Mathieu operators and connections with irrational rotationC *-algebras. Rocky Mountain J. of Math.20:2, 539–548 (1990)

    Google Scholar 

  • [R4] Riedel, N.: Spectra and resolvents of certain polynomials in the irrational rotation algebra. Indiana Univ. Math. J.39:4, 937–945 (1990)

    Google Scholar 

  • [R5] Riedel, N.: The spectrum of a class of almost periodic operators. Preprint 1991; revised version 1993

  • [R6] Riedel, N.: Absence of cantor spectrum for a class of Schrödinger operators. Bull. Am. Math. Soc.29:1, 85–87 (1993)

    Google Scholar 

  • [R7] Riedel, N.: Regularity of the spectrum for the Almost Mathieu operator. Preprint, 1993

  • [R] Rieffel, M.:C *-algebras associated with irrational rotations. Pac. J. Math.,93:2, 415–419 (1981)

    Google Scholar 

  • [S1] Shubin, M.A.: Almost periodic pseudo-differential operators and von Neumann algebras. Trudy Mosov. Mat. Obsc.35, 103–164 (1976). English translation: Trans. Moscow Math. Soc., Issue 1, 103–166 (1979)

    Google Scholar 

  • [S2] Shubin, M.A.: The density of states of selfadjoint elliptic operators with almost periodic coefficients. Trudy Sem. Petrovsk.3, 243–275 (1978). English translation: amer. Math. Soc. Transl. (2) Vol.118, 307–339 (1982)

    Google Scholar 

  • [S3] Shubin, M.A.: The spectral theory and the index of elliptic operators with almost periodic coefficients. Russ. Math. Surv.34:2), 109–157 (1979)

    Google Scholar 

  • [S] Simon, B.: Almost periodic Schrödinger operators: A review. Adv. in Appl. Math.3, 463–490 (1982)

    Google Scholar 

  • [Si] Sinai, Ya. G.: Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential. J. Stat. Phys.46, 861–909 (1987)

    Google Scholar 

  • [S1] Slivnyak, I.M.: Spectrum of the Schrödinger operator with random potential. Zh. Vychisl. Mat. i. Mat. Fiz.6:6, 1104–1108 (1966)

    Google Scholar 

  • [Su] Sunada, T.: Generalized Harper operator on a graph. Workshop on Zeta Functions in Number Theory and Geometric Analysis in Honor of Jun-Ichi Igusa, John Hopkins University, March 29–April 3, 1993

  • [T1] Thouless, D.J.: Bandwidth for a quadiperiodic tight binding model. Phys. Rev.B28, 4272–4276 (1983).

    Google Scholar 

  • [T2] Thouless, D.J.: Scaling for the discrete Mathieu equation. Commun. Math. Phys.127, 187–193 (1990)

    Google Scholar 

  • [T-T1] Thouless, D.J., Tan, Y.: Scaling, localization and bandwidths for equations with competing periods. PhysicaA177, 567–577 (1991)

    Google Scholar 

  • [T-T2] Thouless, D.J., Tan, Y.: Total bandwidth for the Harper equation III. Corrections to scaling. J. Phys.A24, 4055–4066 (1991)

    Google Scholar 

  • [Wa] Watson, G.I.: WKB analysis of energy band structure of modulated systems. J. Phys.A24, 4999–5010 (1991)

    Google Scholar 

  • [W] Wilkinson, M.: Critical properties of electron eigenstates in incommensurate systems. Proc. Royal Soc. Lond.A391, 305–330 (1984)

    Google Scholar 

  • [Z] Zeller-Meier, G.: Produit croisés d'uneC *-algebre par une groupe d'automorphismes. J. Math. Pures et Appl.47, 101–239 (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B. Simon

Supported by NSF grant DMS-9222491

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shubin, M.A. Discrete Magnetic Laplacian. Commun.Math. Phys. 164, 259–275 (1994). https://doi.org/10.1007/BF02101702

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02101702

Keywords

Navigation