Advertisement

Communications in Mathematical Physics

, Volume 174, Issue 3, pp 605–633 | Cite as

Characterizing invariants for local extensions of current algebras

  • Karl-Henning Rehren
  • Yassen S. Stanev
  • Ivan T. Todorov
Article

Abstract

ParisA ⊂ ℬ of local quantum field theories are studied, whereA is a chiral conformal quantum field theory and ℬ is a local extension, either chiral or two-dimensional. The local correlation functions of fields from ℬ have an expansion with respect toA into conformal blocks, which are non-local in general. Two methods of computing characteristic invariant ratios of structure constants in these expansions are compared: (a) by constructing the monodromy representation of the braid group in the space of solutions of the Knizhnik-Zamolodchikov differential equation, and (b) by an analysis of the local subfactors associated with the extension with methods from operator algebra (Jones theory) and algebraic quantum field theory. Both approaches apply also to the reverse problem: the characterization and (in principle) classification of local extensions of a given theory.

Keywords

Correlation Function Quantum Field Theory Structure Constant Operator Algebra Conformal Block 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jones, V.F.R.: Index for subfactors. Invent. Math.72, 1–25 (1983); Braid groups, Hecke algebras, and type II1 factors. In: Geometric Methods in Operator Algebras Proc. of US-Japan Seminar, Kyoto 1983, Pitman Research Notes in Math.123, (1986), pp. 242–273Google Scholar
  2. 2.
    Pasquier, V.: Operator content of the ADE lattice models. J. Phys. A: Math. Gen.20, 5707–5717 (1987)Google Scholar
  3. 3.
    Cappelli, A., Itzykson, C., Zuber, J.-B.: The ADE classification of minimal andA 1(1) conformal invariant theories. Commun. Math. Phys.113, 1–26 (1987)Google Scholar
  4. 4.
    Haag, R., Kastler, D.: An algebraic approach to quantum field theory. J. Math. Phys.5, 848–861 (1964)Google Scholar
  5. 5.
    Doplicher, S., Haag, R., Roberts, J.E.: Local observables and particle statistics. I+II. Commun. Math. Phys.23, 199–230 (1971) and35, 49–85 (1974); Haag, R.: Local Quantum Physics. Texts and Monographs in Physics, Berlin-Heidelberg-New York: Springer, 1992Google Scholar
  6. 6.
    Fredenhagen, K., Rehren, K.-H., Schroer, B.: Superselection sectors with braid group statistics and exchange algebras. I. Commun. Math. Phys.125, 201–226 (1989)Google Scholar
  7. 7.
    Fredenhagen, K., Rehren, K.-H., Schroer, B.: Superselection sectors with braid group statistics and exchange algebras. II. Rev. Math. Phys. Special issue, 113–157 (1992)Google Scholar
  8. 8.
    Longo, R.: Index of subfactors and statistics of quantum fields. I+II. Commun. Math. Phys.126, 217–247 (1989) and Commun. Math. Phys.130, 285–309 (1990)Google Scholar
  9. 9.
    Longo, R., Rehren, K.-H.: Nets of subfactors. Rev. Math. Phys.7, 567–597 (1995) a related program was announced by A. Wassermann, cf. ref. [10] and [32]; for some of the general ideas see [11]Google Scholar
  10. 10.
    Wassermann, A.: Subfactors arising from positive energy representations of some infinite dimensional groups. Unpublished notes 1990; Operator algebras and conformal field theory. Contribution to the ICM conference Zürich 1994, Cambridge 1994Google Scholar
  11. 11.
    Rehren, K.-H.: Subfactors and coset models. In: Generalized Symmetries in Physics, V. Dobrev, et al. eds., Singapore: World Scientific, 1994, pp. 338–356Google Scholar
  12. 12.
    Schellekens, A., Warner, N.: Conformal subalgebras of Kac-Moody algebras. Phys. Rev.D34, 3092–3101 (1986); Bouwknegt, P., Nahm, W.: Realization of the exceptional modular invariantA 1(1) partition functions. Phys. Lett.B184, 359–362 (1987); Bais, F.A., Bouwknegt, P.G.: A classification of subgroup truncations of the bosonic string. Nucl. Phys.B279, 561–570 (1987)Google Scholar
  13. 13.
    Witten, E.: Non-Abelian bosonization in two dimensions. Commun. Math. Phys.92, 445–472 (1984)Google Scholar
  14. 14.
    Fuchs, J., Klemm, A.: The computation of the operator algebra in non-diagonal conformal field theories. Ann. Phys. (N.Y.)194, 303–335 (1989); Fuchs, J., Klemm, A., Scheich, C.: The operator algebra of theE 8 typeSU 2 WZW theory. Zeitschr. f. Phys.C46, 71–74 (1990); Furlan, P., Ganchev, A.Ch., Petkova, V.B.: Fusion matrices andc<1 (quasi) local conformal theories. Int. J. Mod. Phys.A5, 2721–2736 (1990)Google Scholar
  15. 15.
    Stanev, Ya.S., Todorov, I.T., Hadjiivanov, L.K.: Braid invariant rational conformal models with a quantum group symmetry. Phys. Lett.B276, 87–94 (1992)Google Scholar
  16. 16.
    Stanev, Ya.S., Todorov, I.T., Hadjiivanov, L.K.: Braid invariant chiral conformal models with a quantum group symmetry. In: Quantum Symmetries, H.-D., Doebner, V.K., Dobrev, eds., Singapore: World Scientific, 1993, pp. 24–40Google Scholar
  17. 17.
    Tsuchiya, A., Kanie, Y.: Vertex operators in conformal field theory onP 1 and monodromy representations of braid group. In: Conformal Field Theory and Solvable Lattice Models, Adv. Stud. Pure Math.16, 297–372 (1988); and II: Lett. Math. Phys.13, 303–312 (1987)Google Scholar
  18. 18.
    Knizhnik, V.G., Zamolodchikov, A.B.: Current algebra and Wess-Zumino model in two dimensions. Nucl. Phys.B247, 83–103 (1984)Google Scholar
  19. 19.
    Doplicher, S., Roberts, J.E.: Why there is a field algebra with a compact gauge group describing the superselection structure in particle physics. Commun. Math. Phys.131, 51–107 (1990)Google Scholar
  20. 20.
    Felder, G., Gawędzki, K., Kupiainen, A.: The spectrum of Wess-Zumino-Witten models. Nucl. Phys.B299, 355–366 (1988)Google Scholar
  21. 21.
    Todorov, I.T.: What are we learning from 2-dimensional conformal models. In: Mathematical Physics Towards the 21st Century, R.N. Sen, A. Gersten, eds., Beer Sheva, Israel: Ben Gurion University of the Negev Press, 1994, pp. 160–176Google Scholar
  22. 22.
    Stanev, Ya.S., Todorov, I.T.: On Schwarz problem for the\(\widehat{su}_2\) Knizhnik-Zamolodchikov equation. Vienna preprint ESI 121 (1994), Lett. Math. Phys. (To appear)Google Scholar
  23. 23.
    Michel, L., Stanev, Ya.S., Todorov, I.T.: D-E classification of the local extensions ofsu 2 current algebras. Teor. Mat. Fiz.92, 507–521 (1992) (Theor. Math. Phys.92, 1063 (1993))Google Scholar
  24. 24.
    Rehren, K.-H.: Space-time fields and exchange fields. Commun. Math. Phys.132, 461–483 (1990)Google Scholar
  25. 25.
    Buchholz, D., D'Antoni, C., Fredenhagen, K.: The universal structure of local algebras. Commun. Math. Phys.111, 123–135 (1987)Google Scholar
  26. 26.
    Gabbiani, F., Fröhlich, J.: Operator algebras and conformal field theory. Commun. Math. Phys.155, 569–640 (1993)Google Scholar
  27. 27.
    Kosaki, H.: Extension of Jones' theory on index to arbitrary factors. J. Funct. Anal.66, 123–140 (1986)Google Scholar
  28. 28.
    Pimsner, M., Popa, S.: Entropy and index for subfactors. Ann. Sci. Éc. Norm. Sup.19, 57–106 (1986)Google Scholar
  29. 29.
    Longo, R.: A duality for Hopf algebras and for subfactors. I. Commun. Math. Phys.159, 133–150 (1994)Google Scholar
  30. 30.
    Moore, G., Seiberg, N.: Polynomial equations for rational conformal field theories. Phys. Lett.212B, 451–460 (1988)Google Scholar
  31. 31.
    Rehren, K.-H., Schroer, B.: Einstein causality and Artin braids. Nucl. Phys.B312, 715–750 (1989)Google Scholar
  32. 32.
    Loke, T.: Operator algebras and conformal field theory of the discrete series representations of Diff(S 1). PhD thesis Trinity College, Cambridge, UK, 1994Google Scholar
  33. 33.
    Popa, S.: Classification of subfactors of finite depth of the hyperfinite type III1 factor. UCLA preprint (1994); KHR is indebted to Wassermann, A. who informed him of this resultGoogle Scholar
  34. 34.
    Goodman, F., de la Harpe, P., Jones, V.: Coxeter graphs and towers of algebras. MSRI Publ.14, Berlin-Heidelberg-New York: Springer, 1989, Chap. 4.5Google Scholar
  35. 35.
    Rehren, K.-H.: Field operators for anyons and plektons. Commun. Math. Phys.145, 123–148 (1992); cf. in particular Proposition 2.6. and the ‘Notes added in proof’Google Scholar
  36. 36.
    Brunetti, R., Guido, D., Longo, R.: Modular structure and duality in conformal quantum field theory. Commun. Math. Phys.156, 201–219 (1993); Wiesbrock, H.-W.: Conformal quantum field theory and half-sided modular inclusions of von Neumann algebras. Commun. Math. Phys.158, 537–544 (1993)Google Scholar
  37. 37.
    Buchholz, D., Mack, G., Todorov, I.: The current algebra on the circle as a germ for local field theories. Nucl. Phys. B (Proc.Suppl.)5B, 20–56 (1988)Google Scholar
  38. 38.
    Ocneanu, A.: Quantized groups, string algebras, and Galois theory for algebras. In: Operator Algebras and Applications. Vol.2, D.E. Evans, et al. (eds.) London Math. Soc. Lecture Notes Series136, Cambridge, 1988, pp. 119–172Google Scholar
  39. 39.
    Petkova, V.B., Zuber, J.-B.: On structure constants of sl(2) theories. Nucl. Phys.B438, 347–372 (1995)Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Karl-Henning Rehren
    • 1
  • Yassen S. Stanev
    • 2
    • 3
  • Ivan T. Todorov
    • 2
    • 3
  1. 1.II. Institut für Theoretische PhysikUniversität HamburgHamburgGermany
  2. 2.Erwin Schrödinger International Institute for Mathematical PhysicsWienAustria
  3. 3.Institute for Nuclear Research and Nuclear EnergyBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations