Advertisement

Communications in Mathematical Physics

, Volume 174, Issue 3, pp 561–604 | Cite as

Combinatorial quantization of the Hamiltonian Chern-Simons theory II

  • Anton Yu. Alekseev
  • Harald Grosse
  • Volker Schomerus
Article

Abstract

This paper further develops the combinatorial approach to quantization of the Hamiltonian Chern Simons theory advertised in [1]. Using the theory of quantum Wilson lines, we show how the Verlinde algebra appears within the context of quantum group gauge theory. This allows to discuss flatness of quantum connections so that we can give a mathematically rigorous definition of the algebra of observablesA CS of the Chern Simons model. It is a *-algebra of “functions on the quantum moduli space of flat connections” and comes equipped with a positive functional ω (“integration”). We prove that this data does not depend on the particular choices which have been made in the construction. Following ideas of Fock and Rosly [2], the algebraA CS provides a deformation quantization of the algebra of functions on the moduli space along the natural Poisson bracket induced by the Chern Simons action. We evaluate a volume of the quantized moduli space and prove that it coincides with the Verlinde number. This answer is also interpreted as a partition partition function of the lattice Yang-Mills theory corresponding to a quantum gauge group.

Keywords

Modulus Space Wilson Line Chern Simons Theory Deformation Quantization Simons Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alekseev, A. Yu., Grosse, H., Schomerus, V.: Combinatorial quantization of the Hamiltonian Chern Simons theory. HUTMP 94-B336, Commun. Math. Phys. (in press)Google Scholar
  2. 2.
    Fock, V.V., Rosly, A.A.: Poisson structures on moduli of flat connections on Riemann surfaces andr-matrices. Preprint ITEP 72-92, June 1992, MoscowGoogle Scholar
  3. 3.
    Boulatov, D.V.:q-deformed lattice gauge theory and three manifold invariants. Int. J. Mod. Phys.A8, 3139 (1993)Google Scholar
  4. 4.
    Mack, G., Schomerus, V.: Action of truncated quantum groups on quasi quantum planes and a quasi-associative differential geometry and calculus. Commun. Math. Phys.149, 513 (1992)Google Scholar
  5. 5.
    Mack, G., Schomerus, V.: Quasi Hopf quantum symmetry in quantum theory. Nucl. Phys.B370, 185 (1992)Google Scholar
  6. 6.
    Gerasimov, A.: Localization in GWZW and Verlinde formula. Uppsala preprint HEP-TH/9305090Google Scholar
  7. 7.
    Verlinde, E.: Fusion rules and modular transformations if 2D conformal field theory. Nucl. Phys.B300, 360 (1988)Google Scholar
  8. 8.
    Blau, M., Thompson, G.: Derivation of the Verlinde formula from Chern-Simons Theory andG/G model. Nucl. Phys.B408, 345 (1993)Google Scholar
  9. 9.
    Reshetikhin, N., Turaev, V.G.: Ribbon graphs and their invariants derived from quantum groups. Commun. Math. Phys.127, 1 (1990)Google Scholar
  10. 10.
    Drinfel'd, V.G.: Quasi Hopf algebras and Knizhnik Zamolodchikov equations. In: Problems of modern quantum field theory. Proceedings Alushta 1989, Research reports in Physics. Berlin, Heidelberg, New York: Springer, 1989; Drinfel'd, V.G.: Quasi-Hopf algebras. Leningrad. Math. J. Vol.1, No. 6 (1990)Google Scholar
  11. 11.
    Reshetikhin, N., Semenov-Tian-Shansky, M.: Lett. Math. Phys.19, 133 (1990)Google Scholar
  12. 12.
    Fröhlich, J., Gabbiani, F.: Braid statistics in local quantum theory. Rev. Math. Phys.2, 251 (1991)Google Scholar
  13. 13.
    Reshetikhin, N., Turaev, V. G.: Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math.103, 547 (1991)Google Scholar
  14. 14.
    Alekseev, A. Yu., Schomerus, V.: Representation theory of Chern Simons observables. Preprint HUTMP 95-B342,q-alg 9503016Google Scholar
  15. 15.
    Buffenoir, E., Roche, Ph.: Two dimensional lattice gauge theory based on a quantum group. Commun. Math. Phys.170, 669 (1995)Google Scholar
  16. 16.
    Schomerus, V.: Construction of field algebras with quantum symmetry from local observables. Commun. Math. Phys.169, 193 (1995)Google Scholar
  17. 17.
    Axelrod, S., Della Pietra, S., Witten, E.: Geometric quantization of Chern-Simons gauge theory. J. Differential Geometry33, 787 (1991)Google Scholar
  18. 18.
    Gawedzki, K.: SU(2) WZNW model at higher genera from gauge field functional integral. St.-Petersburg Math. J. (to appear)Google Scholar
  19. 19.
    Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys.121, 351 (1989)Google Scholar
  20. 20.
    Knizhnik, V.G., Zamolodchikov, A.B.: Current algebra and Wess-Zumino model in two dimensions. Nucl. Phys.B247, 83 (1984)Google Scholar
  21. 21.
    Bernard, D.: On the Wess-Zumino-Witten Models on Riemann surfaces. Nucl. Phys.B309, 145 (1988)Google Scholar
  22. 22.
    Gorsky, A., Nekrasov, N.: Relativistic Calogero-Moser model as gauged WZW theory. Nucl. Phys.B436, 582 (1995)Google Scholar
  23. 23.
    Nest, R., Tsygan, B.: Algebraic index theorem. Commun. Math. Phys. (to appear)Google Scholar
  24. 24.
    Andersen, J., Mattis, J., Reshetikhin, N.: In preparationGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Anton Yu. Alekseev
    • 1
  • Harald Grosse
    • 2
  • Volker Schomerus
    • 3
  1. 1.Institute of Theoretical PhysicsUppsala UniversityUppsalaSweden
  2. 2.Institut für Theoretische PhysikUniversität WienAustria
  3. 3.Department of PhysicsHarvard UniversityCambridgeUSA

Personalised recommendations