Advertisement

Communications in Mathematical Physics

, Volume 174, Issue 3, pp 537–559 | Cite as

Asymptotic completeness for long-range many-particle systems with Stark effect. II

  • Tadayoshi Adachi
  • Hideo Tamura
Article

Abstract

We prove the existence and the asymptotic completeness of the Dollard-type modified wave operators for many-particle Stark Hamiltonians with long-range potentials.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A] Adachi, T.: Long-range scattering for three-body Stark Hamiltonians. J. Math. Phys.35, 5547–5571 (1994)Google Scholar
  2. [AT] Adachi, T., Tamura, H.: Asymptotic Completeness for Long-Range Many-Particle Systems with Stark Effect. To appear in J. Math. Sci., The Univ. of TokyoGoogle Scholar
  3. [AH] Avron, J.E., Herbst, I.W.: Spectral and scattering theory of Schrödinger operators related to the Stark effect. Commun. Math. Phys.52, 239–254 (1977)Google Scholar
  4. [D] Dereziński, J.: Asymptotic completeness of long-rangeN-body quantum systems. Ann. Math.138, 427–476 (1993)Google Scholar
  5. [E] Enss, V.: Long-range scattering of two- and three-body systems. Proceedings of the Conference ‘Equations aux dérivées partielles’ Saint Lean de Monts, Ecole Polytechnique 1989, pp. 1–31.Google Scholar
  6. [G] Gérard, C.: Asymptotic completeness for 3-particle long-range systems. Invent. Math.114, 333–397 (1993)Google Scholar
  7. [Gr1] Graf, G.M.: Asymptotic completeness forN-body short-range quantum systems: A new proof. Commun. Math. Phys.132, 73–101 (1990)Google Scholar
  8. [Gr2] Graf, G.M.: A remark on long-range Stark scattering. Helv. Phys. Acta64, 1167–1174 (1991)Google Scholar
  9. [HeSj] Helffer, B., Sjöstrand, J.: Equation de Schrödinger avec champ magnétique et équation de Harper. Lecture Notes in Physics345, Berlin-Heidelberg-New York: Springer-Verlag, 1989, p. 118–197Google Scholar
  10. [HS] Herbst, I.W., Skibsted, E.: Spectral analysis ofN-body Stark Hamiltonians (smooth case). Preprint, 1993Google Scholar
  11. [JO] Jensen, A., Ozawa, T.: Existence and non-existence results for wave operators for perturbations of the Laplacian. Rev. Math. Phys.5, 601–629 (1993)Google Scholar
  12. [JY] Jensen, A., Yajima, K.: On the long-range scattering for Stark Hamiltonians. J. reine angew. Math.420, 179–193 (1991)Google Scholar
  13. [Ki] Kitada, H.: Asymptotic completeness ofN-body wave operators I. Short-range quantum systems. Rev. Math. Phys.3, 101–124 (1991)Google Scholar
  14. [Mø] Møller, J.S.: Asymptotic completeness forN-body short-range Stark Hamiltonians. Preprint, 1993Google Scholar
  15. [O] Ozawa, T.: Non-existence of wave operators for Stark effect Hamiltonians. Math. Z.207, 335–339 (1991)Google Scholar
  16. [S] Sigal, I.M.: On long-range scattering. Duke Math. J.60, 473–496 (1990)Google Scholar
  17. [SS1] Sigal, I.M., Soffer, A.: TheN-particle scattering problem: Asymptotic completeness for short-range systems. Ann. Math.125, 35–108 (1987)Google Scholar
  18. [SS2] Sigal, I.M., Soffer, A.: Long-range many body scattering: Asymptotic clustering for Coulomb type potentials. Invent. Math.99, 115–143 (1990)Google Scholar
  19. [Sk] Skibsted, E.: Absolute spectral continuity forN-body Stark Hamiltonians. Preprint, 1993Google Scholar
  20. [T1] Tamura, H.: Asymptotic completeness forN-body Schrödinger operators with short-range interactions. Commun. Partial Differ. Eqs.16, 1129–1154 (1991)Google Scholar
  21. [T2] Tamura, H.: Spectral and scattering theory for 3-particle Hamiltonian with Stark effect: Asymptotic completeness. Osaka. J. Math.29, 135–159 (1990)Google Scholar
  22. [T3] Tamura, H.: Scattering theory forN-particle Systems with Stark effect: Asymptotic Completeness. Publ. RIMS Kyoto Univ.29, 869–884 (1993)Google Scholar
  23. [Wa] Wang, X.P.: On the Three-Body Long-Range Scattering Problems. Lett. Math. Phys.25, 267–276 (1992)Google Scholar
  24. [W1] White, D.: The Stark effect and long-range scattering in two Hilbert spaces. Indiana Univ. Math. J.39, 517–546 (1990)Google Scholar
  25. [W2] White, D.: Modified wave operators and Stark Hamiltonians. Duke Math. J.68, 83–100 (1992)Google Scholar
  26. [Y] Yafaev, D.: Radiation conditions and scattering theory forN-particle Hamiltonians. Commun. Math. Phys.154, 523–554 (1993)Google Scholar
  27. [Z] Zielinski, L.: A proof of asymptotic completeness forN-body Schrödinger operators. Commun. Partial Differ. Eqs.19, 455–522 (1994)Google Scholar
  28. [Zo] Zorbas, J.: Scattering theory for Stark Hamiltonians involving long-range potentials. J. Math. Phys.19, 577–580 (1978)Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Tadayoshi Adachi
    • 1
  • Hideo Tamura
    • 2
  1. 1.Department of Mathematical SciencesUniversity of TokyoTokyoJapan
  2. 2.Department of MathematicsIbaraki UniversityMito, IbarakiJapan

Personalised recommendations