Communications in Mathematical Physics

, Volume 174, Issue 3, pp 509–535 | Cite as

Asymptotic completeness forN-body Stark Hamiltonians

  • Ira Herbst
  • Jacob Sachach Møller
  • Erik Skibsted


We prove asymptotic completeness for short- and long-rangeN-body Stark Hamiltonians with local singularities of at most Coulomb type. Our results include the usual models for atoms and molecules.


Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A] Adachi, T.: Long-range scattering for three-body Stark Hamiltonians. Preprint 1993Google Scholar
  2. [B] Balslev, E.: Absence of positive eigenvalues of Schrödinger operators. Arch. Rational Mech. Anal.54, 343–357 (1975)Google Scholar
  3. [D] Derezinski, J.: Asymptotic completeness of long rangeN-body quantum systems. Ann. Math.138, 427–476 (1993)Google Scholar
  4. [E] Enss, V.: Long-range scattering of two- and three-body quantum systems. Proceedings of the conference “Equations aux derivees partielles” Saint Jean de Monts, Ecole Polytechnique, 1989Google Scholar
  5. [FH] Froese, R.G., Herbst, I.: Exponential bounds and absence of positive eigenvalues forN-body Schrödinger operators. Commun. Math. Phys.87, 429–447 (1982)Google Scholar
  6. [G1] Graf, G.M.: Asymptotic completeness forN-body short-range quantum systems: A new proof. Commun. Math. Phys.132, 73–101 (1990)Google Scholar
  7. [G2] Graf, G.M.: A remark on long-range Stark scattering. Helvetica Physica Acta64, 1168–1174 (1991)Google Scholar
  8. [He] Herbst, I.: Spectral and scattering theory for Schrödinger operators with potentials independent of |x|. Am. J. Math.113, 509–565 (1991)Google Scholar
  9. [Hö] Hörmander, L.: The analysis of linear partial differential operators I. Berlin, Heidelberg, New York: Springer, 1983Google Scholar
  10. [HMS1] Herbst, I., Møller, J.S., Skibsted, E.: Spectral analysis ofN-body Stark Hamiltonians. Commun. Math. Phys. (1995)Google Scholar
  11. [K] Korotyaev, E.L.: On the scattering theory of several particles in an external electric field. Math. USSR Sb.60, 177–196 (1988)Google Scholar
  12. [Sk] Skibsted, E.: Propagation estimates forN-body Schrödinger operators. Commun. Math. Phys.142, 67–98 (1991)Google Scholar
  13. [Si] Simon, B.: Absence of positive eigenvalues in a class of multiparticle quantum systems. Math. Ann.207, 133–138 (1974)Google Scholar
  14. [SS] Sigal, I.M., Soffer, A.: TheN-particle scattering problem: Asymptotic completeness for short-range systems. Ann. Math.125, 35–108 (1987)Google Scholar
  15. [T1] Tamura, H.: Spectral and scattering theory for 3-particle Hamiltonians with Stark effect: Asymptotic completeness. Osaka J. Math.29, 135–159 (1992)Google Scholar
  16. [T2] Tamura, H.: Spectral and scattering theory for 3-particle Hamiltonian with Stark effect: Non-existence of bound states and resolvent estimate. Preprint 1993Google Scholar
  17. [T3] Tamura, H.: Scattering theory forN-particle systems with Stark Effect: Asymptotic completeness. Publ. RIMS, Kyoto Univ.29, 869–884 (1993)Google Scholar
  18. [Z] Zorbas, J.: Scattering theory for Stark Hamiltonians involving long-range potentials. J. Math. Phys.19, 577–580 (1978)Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Ira Herbst
    • 1
  • Jacob Sachach Møller
    • 1
  • Erik Skibsted
    • 2
  1. 1.Department of MathematicsUniversity of VirginiaCharlottesvilleUSA
  2. 2.Matematisk InstitutAarhus UniversitetAarhus CDenmark

Personalised recommendations