Skip to main content
Log in

Continuity properties of the electronic spectrum of 1D quasicrystals

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we consider operatorsH(α,x) defined onl 2(ℤ) by

$$H(\alpha ,x)\psi (n) = \sum\limits_{m \in \mathbb{Z}} {t_m \circ \phi ^{ - n} (\alpha ,x)} \psi (n - m),$$

where ϕ(α,x)=(α,x−α),t m is in the algebra of bounded periodic functions on ℝ2 generated by the characteristic functions of the sets

$$\phi ^n \left\{ {(\alpha ,x) \in \mathbb{R}^2 \left| {\left. {1 - \alpha \leqq x< \alpha (\bmod 1)} \right\}.} \right.} \right.$$

This class of hamiltonian includes the Kohmoto model numerically computed by Ostlund and Kim, where the potential is given by

$$\upsilon _{\alpha ,x} (n) = \lambda \chi _{[1 - \alpha ,1[} (x + n\alpha ),n \in \mathbb{Z},x,\lambda ,\alpha \in \mathbb{R}$$

(see [B.I.S.T.]). We prove that the spectrum (as a set) ofH(α,x), varies continuously with respect to α near each irrational, for anyx. We also show that the various strong limits obtained as α converges to a rational numberp/q describe either a periodic medium or a periodic medium with a localized impurity. The corresponding spectrum has eigenvalues in the gaps and the right and left limits as α→p/q do not coincide, for the Kohmoto model. The results are obtained throughC *-algebra techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [Be.] Bellissard, J.:K-theory ofC *-algebras in solid state physics, statistical mechanics and field theory. Mathematical aspects. Dorlas, T.C., Hugenholtz, M.N., Winnink, M. (eds.) pp. 99–156, Lect. Notes in Phys. vol.257, Berlin, Heidelberg, New York: Springer 1986

    Google Scholar 

  • [B.] de Bruijn, N.G.: Sequences of zeros and ones generated by special production rules. Indagationes Math.84, 27–37 (1981)

    Google Scholar 

  • [B.I.S.T.] Bellissard, J., Iochum, B., Scoppola, E., Testard, D.: Spectral theory of one dimensional quasi-crystal. Commun. Math. Phys.125, 527–543 (1989)

    Google Scholar 

  • [C.] Casdagli, M.: Symbolic dynamics for the renormalization map of a quasiperiodic Schrödinger equation. Commun. Math. Phys.107, 295–318 (1986)

    Google Scholar 

  • [C.F.K.S.] Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger operators. Text and Monographs in Physics. Berlin, Heidelberg, New York: Springer 1987

    Google Scholar 

  • [D.] Dixmier, J.: LesC *-algèbres et leurs représentations. Paris: Gauthiers-Villars 1969

    Google Scholar 

  • [D.M.L.B.H.] Dharma-Wardana, M.W.C., MacDonald, A.H., Lockwood, D.J., Baribeau, J.M., Houghton, D.C.: Raman scattering in Fibonacci superlattices. Phys. Rev. Lett.58, 1761–1764 (1987)

    Google Scholar 

  • [E.] Elliott, G.: Gaps in the spectrum of an almost periodic Schrödinger operator. C.R. Math. Rep. Acad. Sci. Canada4, 255–259 (1982)

    Google Scholar 

  • [F.H.] Feigenbaum, M.J., Hasslacher, B.: Irrational decimations and path integrals for external noise. Phys. Rev. Lett.49, 605–609 (1982)

    Google Scholar 

  • [H.Q.] Hawrylak, P., Quinn, J.J.: Critical plasmons of a quasiperiodic semiconductor superlattice. Phys. Rev. Lett.57, 380–383 (1986)

    Google Scholar 

  • [H.] Holtzer, M.: Three classes of one-dimensional, two-tile Penrose tilings and the Fibonacci Kronig-Penney model as a generic case. Phys. Rev. B38, 1709–1720 (1988)

    Google Scholar 

  • [H. 1] Holtzer, M.: Nonlinear dynamics of localization in a class of one-dimensional quasicrystals. Phys. Rev. B38, 5756–5759 (1988)

    Google Scholar 

  • [K.] Kato, T.: Perturbation Theory for linear operators. Berlin, Heidelberg, New York: Springer 1966

    Google Scholar 

  • [K.K.T.] Kadanoff, L.P., Kohmoto, M., Tang, C.: Localization problem in one dimension: mapping and escape. Phys. Rev. Lett.50, 1870–1873 (1983)

    Google Scholar 

  • [K.O.] Kohmoto, M., Onoo, Y.: Cantor spectrum for an almost periodic Schrödinger equation and a dynamical map. Phys. Lett.102A, 145–148 (1984)

    Google Scholar 

  • [K.S.] Kohmoto, M., Sutherland, B.: Electronic states on Penrose lattice. Phys. Rev. Lett.56, 2740–2743 (1986)

    Google Scholar 

  • [K.S.I.] Kohmoto, M., Sutherland, B., Iguchi, K.: Localization in optics: quasiperiodic media. Phys. Rev. Lett.58, 2436–2438 (1987)

    Google Scholar 

  • [K.S.T.] Kohmoto, M., Sutherland, B., Tang, C.: Critical wave functions and a Cantorset spectrum of a one dimensional quasicrystal model. Phys. B35, 1020–1033 (1987)

    Google Scholar 

  • [Le.] Lee, R.-Y.: On theC *-algebras of operator fields. Indiana Univ. Math. J.25, 303–314 (1976)

    Google Scholar 

  • [L.] Levitov, L.S.: Renormalization group for a quasiperiodic Schrödinger operator. J. Phys.50, 707–716 (1989)

    Google Scholar 

  • [L.M.A.D.D.M.] Lockwood, D.J., MacDonald, A.H., Aers, G.C., Dharma-Wardana, M.W.C., Devine, R.L.S., Moore, W.T.: Raman scattering in a GaAs/Ga1−x AlxAs Fibonacci superlattice. Phys. Rev. B36, 9286–9289 (1987)

    Google Scholar 

  • [L.O.B.] Lu, J.P., Odagaki, T., Birman, J. L.: Properties of one-dimensional quasilattices. Phys. Rev. B33, 4809–4817 (1986)

    Google Scholar 

  • [L.P.] Luck, J.M., Petritis, D.: Phonon in one-dimensional quasi-crystal. J. Stat. Phys.42, 289–310 (1986)

    Google Scholar 

  • [M.] MacDonald, A.H.: Fibonacci superlattices. In: Interfaces, quantum wells and superlattices. Leavers, R., Taylor, R. (eds.) New York: Plenum Press (1988)

    Google Scholar 

  • [M.A.] MacDonald, A.H., Aears, G.C.: Continuum-model acoustic and electronic properties for a Fibonacci superlattice. Phys. Rev. B36, 9142–9145 (1987)

    Google Scholar 

  • [M.B.C.J.B.] Merlin, R., Bajema, K., Clarke, R., Juang, F.-Y., Bhattacharya, P.K.: Quasiperiodic GaAs−AlAs heterostructures. Phys. Rev. Lett.55, 1768–1770 (1985)

    Google Scholar 

  • [M.F.] Machida, K., Fujita, M.: Quantum energy spectra and one dimensional quasiperiodic systems. Phys. Rev. B34, 7367–7370 (1986)

    Google Scholar 

  • [M.N.] Machida, K., Nakano, M.: Soliton lattice structure and mid-gap band in nearly commensurate charge-density-wave states. II. Selfsimilar band structure and coupling constant dependence. Phys. Rev. B34, 5073–5081 (1986)

    Google Scholar 

  • [M.S.] Mookerjee, A., Singh, V.A.: Nature of the eigenstates on a Fibonacci chain. Phys. Rev. B34, 7433–7435 (1986)

    Google Scholar 

  • [M.T.] Ma, H.-R., Tsai, C.-H.: Interface polariton modes in semiconductor quasiperiodic lattices. Phys. Rev. B35, 9295–9297 (1987)

    Google Scholar 

  • [N.R.] Nori, F., Rodriguez, J.P.: Acoustic and electric properties of one-dimensional quasicrystals. Phys. Rev. B34, 2207–2211 (1986)

    Google Scholar 

  • [O.A.] Odagami, T., Aoyama, H.: Self-similarities in one-dimensional periodic and quasiperiodic systems. Phys. Rev. B39, 475–487 (1989)

    Google Scholar 

  • [O.A.1] Odagami, T., Aoyama, H.: Hyperinflation in periodic and quasiperiodic chains. Phys. Rev. Lett.61, 775–778 (1988)

    Google Scholar 

  • [O.K.] Ostlund, S., Kim, S.H.: Renormalization of quasi-periodic mappings. Physica Scripta9, 193–198 (1985)

    Google Scholar 

  • [O.P.] Ostlund, S., Prandit, R.: Renormalization-group analysis of the discrete quasiperiodic Schrödinger equation. Phys. Rev. B29, 1394–1414 (1984)

    Google Scholar 

  • [O.P.R.S.S.] Ostlund, S., Prandit, R., Rand, R., Schnellnhuber, H.J., Siggia, E.D.: One dimensional Schrödinger equation with an almost periodic potential. Phys. Rev. Lett.50, 1873–1877 (1983)

    Google Scholar 

  • [P.] Pedersen, G.:C *-algebras and their automorphism groups. London, New York: Academic Press, 1979

    Google Scholar 

  • [R.S.] Reed, M., Simon, B.: Methods of modern mathematical physics, Vol. I. New York: Academic Press 1972

    Google Scholar 

  • [S.] Sütö, A.: Singular continuous spectrum on a Cantor set of zero Lebesgue measure for the Fibonacci Hamiltonian. J. Stat. Phys.56, 525–531 (1989)

    Google Scholar 

  • [S.O.] Steinhardt, P.J., Ostlund, S.: The physics of quasicrystals. Singapore: World Scientific 1987

    Google Scholar 

  • [T.] Tomiyama, J.: Topological representations ofC *-algebras. Tôhoku Math. J.14, 187–204 (1962)

    Google Scholar 

  • [V.B.L.T.] Vergés, J.A., Brey, L., Lewis, E., Tejedor, C.: Localization in a one-dimensional quasiperiodic Hamiltonian with off-diagonal disorder. Phys. Rev. B35, 5270–5272 (1987)

    Google Scholar 

  • [W.] Wijnands, F.: Energy spectra for one-dimensional quasiperiodic potentials: bandwidth, scaling, mapping and relation with local isomorphism. J. Phys. A22, 3267–3282 (1989)

    Google Scholar 

  • [W.T.P.] Würtz, D., Schneider, T., Politi, A.: Renormalization-group study of Fibonacci chains. Phys. Lett. A129, 88–92 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Araki

Laboratoire propre L.P. 7061 du Centre National de la Recherche Scientifique

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellissard, J., Iochum, B. & Testard, D. Continuity properties of the electronic spectrum of 1D quasicrystals. Commun.Math. Phys. 141, 353–380 (1991). https://doi.org/10.1007/BF02101510

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02101510

Keywords

Navigation