Communications in Mathematical Physics

, Volume 164, Issue 3, pp 473–488 | Cite as

Classical intertwiner space and quantization



Given two symplectic realizations, a symplectic manifold called the classical intertwiner space is introduced as a classical analogue of an intertwiner space of representations of an associative algebra. We describe explicitly how a quantum data on realizations induces a quantum data on their classical intertwiner space.


Neural Network Manifold Statistical Physic Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bott, R., Tu, L.W.: Differential forms in algebraic topology. GTM82, Berlin Heidelberg New York: Springer 1982Google Scholar
  2. 2.
    Coste, A., Dazord, P., Weinstein, A.: Groupoïdes symplectiques. In: Publications du Département de Mathématiques de l'Université de Lyon, I, number 2/A-1987, 1987, pp. 1–65Google Scholar
  3. 3.
    Drinfel'd, V.G.: Quantum groups. In: A. M. Gleason (ed.) Proceedings of the International Congress of Mathematicians, Berkeley, 1986, Providence, RI: American Mathematical Society, 1987, pp. 798–820Google Scholar
  4. 4.
    Ginzburg, V., Weinstein, A.: Lie-Poisson structure on some Poisson Lie groups. J. of AMS5, No. 2, 445–453 (1992)Google Scholar
  5. 5.
    Guillemin, V., Sternberg, S.: Geometric quantization and multiplicities of group representations. Invent. Math.67, 515–538 (1982)Google Scholar
  6. 6.
    Guillemin, V., Sternberg, S.: Geometric asymptotics. Volume 14, Mathematical Surveys and Monographs. American Mathematical Society, revised edition, 1990Google Scholar
  7. 7.
    Higgins, P.J., Mackenzie, K.C.H.: Algebraic constructions in the category of Lie algebroids. J. Algebra129, 194–230 (1990)Google Scholar
  8. 8.
    Huebschmann, J.: Poisson cohomology and quantization. J. Reine Angew. Math.408, 57–113 (1990)Google Scholar
  9. 9.
    Kirillov, A.A.: Elements of the theory of representations. Volume220 of Grundlehren der mathematischen Wissenschaften. Berlin Heidelberg New York: Springer, 1976Google Scholar
  10. 10.
    Landsman, N.P.: Rieffel induction as generalized quantum Marsden-Weinstein reduction. Preprint, 1993Google Scholar
  11. 11.
    Jiang-Hua Lu.: Momentum mappings and reduction of Poisson actions. In: P. Dazord, A. Weinstein (eds.) Symplectic geometry, groupoids, and integrable systems, Seminaire sud Rhodanien a Berkeley, 1989, Berlin Heidelberg New York: Springer-MSRI publications, 1991, pp. 209–226Google Scholar
  12. 12.
    Jiang-Hua Lu, Weinstein, A.: Groupoïdes symplectiques doubles des groupes de Lie-Poisson. C.R. Acad. Sci. Paris Sér. I. Math.309, 951–954 (1989)Google Scholar
  13. 13.
    Jiang-Hua Lu, Weinstein, A.: Poisson Lie groups, dressing transformations, and Bruhat decompositions. J. Differential Geom.31, 501–526 (1990)Google Scholar
  14. 14.
    Mackenzie, K.C.H.: Lie groupoids and Lie algebroids in differential geometry. London Mathematical Society Lecture Note Series, no.124, Cambridge: Cambridge University Press, 1987Google Scholar
  15. 15.
    Mackenzie, K.C.H., Xu, P.: Lie bialgebroids and Poisson groupoids. Duke Math. J.,73, No. 2, 415–452 (1994)Google Scholar
  16. 16.
    Marsden, J., Weinstein, A.: Reduction of symplectic manifolds with symmetry. Rep. Math. Phys.5, 121–129 (1974)Google Scholar
  17. 17.
    Mikami, K., Weinstein, A.: Moments and reduction for symplectic groupoids. Publ. Res. Inst. Math. Sci.24, 121–140 (1988)Google Scholar
  18. 18.
    Semenov-Tian-Shansky, M.A.: Dressing transformations and Poisson group actions. Publ. Res. Inst. Math. Sci.21, 1237–1260 (1985)Google Scholar
  19. 19.
    Sniatycki, J.: Geometric quantization and quantum mechanics. Berlin Heidelberg New York: Springer, 1980Google Scholar
  20. 20.
    Szymczak, I., Zakrzewski, S.: Quantum deformations of Heisenberg group obtained by geometric quantization. J. Geom. Phys.7, N. 4, 553–569, (1990)Google Scholar
  21. 21.
    Weinstein, A.: Symplectic groupoids and Poisson manifolds. Bull. Am. Math. Soc. (N.S.)16, 101–104 (1987)Google Scholar
  22. 22.
    Weinstein, A.: Noncommutative geometry and geometric quantization. In: J. Elhadad, P. Donato, D. Duval and G.M. Tuynman, editors, Symplectic geometry and mathematical Physics, Seminaire sud-rhodanien de géométrie, Aix-Provence 1990, Basel Boston: Birkhäuser, Progress in Mathematics, number99, 1991, pp. 447–461Google Scholar
  23. 23.
    Weinstein, A.: Symplectic groupoids, geometric quantization, and irrational rotation algebras. In: P. Dazord and A. Weinstein, editors, Symplectic geometry, groupoids, and integrable systems, Seminaire sud Rhodanien a Berkeley, 1989, Berlin Heidelberg New York: Springer-MSRI publications, 1991, pp. 281–290Google Scholar
  24. 24.
    Weinstein, A., Xu, P.: Classical solutions to the quantum Yang-Baxter equation. Commun. Math. Phys.148, 309–343 (1992)Google Scholar
  25. 26.
    Xu, P.: Morita equivalence of Poisson manifolds. Commun. Math. Phys.142, 493–509 (1991)Google Scholar
  26. 27.
    Xu, P.: Morita equivalent symplectic groupoids. In: P. Dazord, A. Weinstein (eds.) Symplectic geometry, groupoids and integrable systems, Seminaire sud Rhodanien a Berkeley, 1989, Berlin Heidelberg New York: Springer-MSRI publications, 1991, pp. 291–311Google Scholar
  27. 28.
    Xu, P.: Morita equivalence and symplectic realizations of Poisson manifolds. Ann. Scient. Éc. Norm. Sup., 4 série,25, 307–333 (1992)Google Scholar
  28. 29.
    Xu, P.: Symplectic groupoids of reduced Poisson spaces. C. R. Acad. Sci. Paris. Sér. I. Math.,314, 457–461 (1992)Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Ping Xu
    • 1
    • 2
  1. 1.Mathematical Sciences Research InstituteBerkeleyUSA
  2. 2.Department of MathematicsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations