Skip to main content
Log in

A matrix integral solution to [P, Q]=P and matrix laplace transforms

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we solve the following problems: (i) find two differential operatorsP andQ satisfying [P, Q]=P, whereP flows according to the KP hierarchy ϖPt n =[(P n/p)+,P], withp:=ordP≥2; (ii) find a matrix a integral representation for the associated τ-function. First we construct an infinite dimensional spaceW= span{ψ 0(z,ψ 1(z,...)} of functions ofzεℂ invariant under the action of two operators, multiplication byz p andA c :=zϖ/ϖzz+c. This requirement is satisfied, for arbitraryp, ifψ 0 is a certain function generalizing the classical Hänkel function (forp=2); our representation of the generalized Hänkel function as adouble Laplace transform of a simple function, which was unknown even for thep=2 case, enables us to represent the τ-function associated with the KP time evolution of the spaceW as a “double matrix Laplace transform” in two different ways. One representation involves an integration over the space of matrices whose spectrum belongs to a wedge-shaped contourγγ -+γ - ⊂ℂ defined byγ ± = ℝ+e±πi/p. The new integrals above relate to matrix Laplace transforms, in contrast with matrix Fourier transforms, which generalize the Kontsevich integrals and solve the operator equation [P, Q]=1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, M., van Moerbeke, P.: A matrix integral solution to two-dimensionalW p -Gravity. Commun. Math. Phys.147, 25–56 (1992)

    Article  Google Scholar 

  2. Adler, M., Shiota, T., van Moerbeke, P.: From theω to its central extension: A τ-function approach. Phys. Lett.A194, 33–43 (1994);

    Google Scholar 

  3. —, A Lax representation for the vertex operator and the central extension. Commun. Math. Phys.171, 547–588 (1995)

    Google Scholar 

  4. Crnković, C., Douglas, M., Moore, G.: Physical solutions for unitary matrix models. Nucl. Phys.B360, 507–523 (1991)

    Article  Google Scholar 

  5. Dalley, S., Johnson, C.V., Morris, T.R., Wätterstam, A.: Unitary matrix models and 2D quantum gravity. Mod. Phys. Lett.A 7, (29) 2753–2762 (1992)

    Article  Google Scholar 

  6. Dalley, S., Johnson, C.V., Morris, T.R.: Multicritical complex matrix models and non-perturbative two-dimensional quantum gravity. Nucl. Phys.B368,625–654 (1992)

    Article  Google Scholar 

  7. Date, E., Jimbo, M., Kashiwara, M., Miwa, T.: Transformation groups for soliton equations. In: Proceedings RIMS Symp. Non-linear integrable systems—classical theory and quantum theory (Kyoto 1981), Singapore: World Scientific, 1983, pp. 39–119

    Google Scholar 

  8. Dijkgraaf, R.: Intersection Theory, Integrable Hierarchies and Toplogical Field Theory. Lectures given at the Cargese Summer School on “New Symmetry Principles in Quantum Field Theory.” hep-th/9201003.

  9. Fastré, J.: A Grassmannian version of the Darboux transformation. To appear in Bull. des Sciences Math.

  10. Flaschka, H.: A commutator representation of Painlevé equations. J. Math. Phys.21 (5), 1016–1018 (1980)

    Article  Google Scholar 

  11. Flaschka, H., Newell, A.C.: Monodromy- and spectrum-preserving deformations I. Commun. Math. Phys.76, 65–116 (1980)

    Article  Google Scholar 

  12. Fokas, A.S., Ablowitz, M.J.: On a unified approach to transformations and elementary solutions of Painlevé equations. J. Math. Phys.23 (11), 2033–2042 (1982)

    Article  Google Scholar 

  13. Gross, D.J., Newman, M.J.: Unitary and Hermitian matrices in an external field. Phys. Lett.B266, 291–297 (1991)

    Article  Google Scholar 

  14. Harish Chandra: Differential operators on a semi-simple lie algebra. Am. J. Math.79, 87–120 (1957)

    Google Scholar 

  15. Hollowood, T., Maramontes, L., Pasquinucci, A., Nappri, C.: Hermitian versus anti-Hermitian onematrix models and their hierarchies. Nucl. Phys.B373, 247–280 (1992)

    Article  Google Scholar 

  16. Kac, V., Schwarz, A.: Geometric interpretation of partition function of 2D gravity. Phys. Lett.B257, 329–334 (1991);

    Article  Google Scholar 

  17. Schwarz, A.: On some mathematical problems of 2d-gravity andW p -gravity. Mod. Phys. Lett.A 6, 611–616 (1991)

    Article  Google Scholar 

  18. Kazakov, V.A.: A simple solvable model of quantum field theory of open strings. Phys. Lett.B237 (2), 212–215 (1990)

    Article  Google Scholar 

  19. Kharchev, S., Marshakov, A., Mironov, A., Morozov, A., Zabrodin, A.: Towards unified theory of 2d gravity. Nucl. Phys.B380, 181–240 (1992)

    Article  Google Scholar 

  20. Kharchev, S., Marshakov, A.: Topological versus non-topological theories. Preprint FIAN/TD-15/92. To appear in Int. J. Mod. Phys.A. See also Sect. 4.9 of the second paper in [24]. For a general discussion of string program and more details on matrix models in this context see: Morozov, A.: String theory: What is it? Usp. Fiz. Nauk162 (8), 83–176 (1992) (Soviet Physics Uspekhi35, 671–714 (1992))

  21. Kontsevich, M.: Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys.147, 1–23 (1992)

    Article  Google Scholar 

  22. Kostov, I.K.: Exactly solvable field theory ofD=0 closed and open strings. Phys. Lett.B238, 181–186 (1990)

    Article  Google Scholar 

  23. Macdonald, I.G.: Symmetric functions and Hall polynomials. Second Edition. Oxford: Clarendon Press; New York: Oxford University Press, 1995

    Google Scholar 

  24. Minahan, J.A.: Matrix models with boundary terms and the generalized Painlevé II equation. Phys. Lett.B268, 29–34 (1991)

    Article  Google Scholar 

  25. Minahan, J.A.: Schwinger-Dyson equations for unitary matrix models with boundaries. Phys. Lett.B265, 382–388 (1991)

    Article  Google Scholar 

  26. For a general discussion of string program and more details on matrix models in this context see: Morozov, A.: String theory: What is it? Usp. Fiz. Nauk162 (8), 83–176 (1992) (Soviet Physics Uspekhi35, 671–714 (1992)), and Morozov, A.: Integrability and matrix models. Usp. Fiz. Nauk,164 (1), 3–62 (1994)(Physics Uspekhi,37, 1–55 (1994), hep-th/9303139), and references therein.

    Google Scholar 

  27. Morozov, A.: Matrix Models as Integrable Systems. Presented at Banff Conference, Banff, Canada, August 15–23, 1994. ITEP-M2/95, hep-th/9502091

  28. Mulase, M.: Algebraic theory of the KP equations. In: Perspectives in Mathematical Physics, Ed.: R. Penner and S.-T. Yau, International Press Company, 1994, pp. 157–223

  29. Periwal, V., Shevitz, D.: Exactly solvable unitary matrix models: Multicritical potentials and correlations. Nucl. Phys.B344, 731–746 (1990)

    Article  Google Scholar 

  30. Periwal, V., Shevitz, D.: Unitary-matrix models as exactly solvable string theories. Phys. Rev. Lett.64, (12), 1326–1329 (1990)

    Article  Google Scholar 

  31. Sato, M.: Soliton equations and the universal Grassmann manifold (by Noumi in Japanese). Math. Lect. Note Ser. No.18. Sophia University, Tokyo, 1984

    Google Scholar 

  32. Segal, G., Wilson, G.: Loop groups and equations of KdV type. IHES Publ. Math.61, 5–65 (1985)

    Google Scholar 

  33. van Moerbeke, P.: Integrable foundation of string theory. In: Proceedings of the CIMPA school 1991. Ed.: O. Babelon, P. Cartier, Y. Kosmann-Schwarzbach, Singapore: World Scientific, 1994, pp. 163–267

    Google Scholar 

  34. Wätterstam, A.: A solution to the string equation of unitary matrix models. Phys. Lett.B263, No 1, 51–58 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. van Moerbeke.

Additional information

Communicated by R.H. Dijkgraaf

The support of a National Science Foundation grant #DMS-95-4-51179 is gratefully acknowledged.

The hospitality of the Volterra Center at Brandeis University is gratefully acknowledged.

The hospitality of the University of Louvain and Brandeis University is gratefully acknowledged.

The support of a National Science Foundation grant #DMS-95-4-51179, a Nato, an FNRS and a Francqui Foundation grant is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adler, M., Morozov, A., Shiota, T. et al. A matrix integral solution to [P, Q]=P and matrix laplace transforms. Commun.Math. Phys. 180, 233–263 (1996). https://doi.org/10.1007/BF02101187

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02101187

Keywords

Navigation