Skip to main content
Log in

Heterotic superstring gauge residue trivialization via homogeneousCP 4 topology change

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A new mechanism for the cancellation of gauge residue symmetries in the framework of heterotic superstring compactification theories is revealed. The model preserves all the string features and fits naturally in the consistent topological structure of the homogeneousCP 4 Calabi-Yau manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gross, J., Harvey, J. A., Martinec, E., Rohm, R.: Phys. Rev. Lett.54, 502 (1985); Nucl. Phys.B256, 253 (1985);B267, 75 (1986); Narain, K. S.: Phys. Lett.B169 (1986); Narain, K. S. Sarmadi, ?. ?., Witten, E.: Nucl. Phys.B279, 369 (1987); Dixon, L., Harvey, J. A., Vafa, C., Witten, E.: Nucl. Phys.B274, 285 (1986);B261, 651 (1985); Strominger, A., Witten, E.: Commun. Math. Phys.101, 341 (1985)

    Article  Google Scholar 

  2. Ibanez, L. E., Nilles, H. P., Quevedo, F.: Phys. LettB187, 25 (1989); Phys. Lett.B192, 332 (1987)

    Article  Google Scholar 

  3. Kawai, H., Lewellen, C., Tye, H.: Nucl. Phys.B288, 1 (1987); Lerche, W., Lust, D., Schellekens, N.: Phys. Lett.B181, 71 (1986); Nucl. Phys.B287, 667 (1987)

    Article  Google Scholar 

  4. Borel, A.: Topology of Lie Group and Characteristic Classes. Am. Math. Bull. 397–432 (1955). For a general overview of differential geometry see S. Kobayashi: Differential Geometry of Complex Vector Bundles. Princeton, NJ: Princeton Univ. Press, 1987. Kobayashi and Nomizu: Foundations of Differential Geometry, Vol. 2. New York: Intersciences Publishers 1963–1969

  5. An extensive discussion about the heterotic superstring compactification is given in Unified String Theories, Gross and Green (ed.). Singapore: World Scientific, 1985, pp. 294, 357, 400–438, 635. For a deep mathematical approach to this topic see Candelas, E.: Lecture on Complex Manifolds, pp. 1–88. Superstring 88, Singapore: World Scientific, Trieste 87 Spring School on Superstrings, Gaune, A., Green, Grisaru (ed.). See also Symposium on Anomalies, Geometry, and Topology, eds. Bardeen and White, Argonne, 1985, also Calabi, L.: Rend. Math. e Appl. Vol. 11 (1952) pp. 1–5

    Google Scholar 

  6. Cartan, E.: Notions d'Algebre Differentielles: Application Aux Groupes de Lie. (Collogue de Topologie sur les Espaces Fibrés) Bruxelles (1950), Paris-Liege (1951) pp. 15–27. Cartan, E.: La Transpression dans un Groupe de Lie et dans an Espace Fibré Principal; ibid. (Collogue de Topologie sur les Espaces Fibrés) Bruxelles (1950), Paris-Liege (1951) pp. 57–71

  7. For a specific discussion see R. Bott, W. Tu: Differential Forms in Algebraic Topology, Berlin, Heidelberg, New York: Springer, 1982, pp. 8, 266. A general connection between homogeneous spaces and characteristic class may be found in Cartan, E.: Sur les invariants integraux de certains Espaces Homogènes Clos et les Proprietés topologiques de ces espaces 7, Annal. Societe Polonaise Math., Vol.8 (1929) pp. 181–225; Cartan, E.: Oeuvres Completes, Part I, Vol. 3, Paris: Gallimard-Gauthier Villars, 1952, pp. 1081–1125. See also the good paper of Borel, A. and Hirzebruch, F. on characteristic classes of homogeneous space (1956)

    Google Scholar 

  8. Cartan, E.: La Transgression dans un Groupe de Lie et dans un Space Fibré Principal. Colloque de Topologie sur les espace fibrés. Paris (1951)

  9. Witten, E.: Commun. Math. Phys.100, 197 (1985); S. Panier: Algebraic Topology, New York: McGraw Hill, 1966. See also Chap. 3 of Bott & Tu: Differential Forms in Algebraic Topology

    Article  Google Scholar 

  10. Borel, A.: Sur la Torsion des Groupes de Lie, J. Math. Pures Appl., (1955), and Torsion in Lie Groups, Proc. Natl. Acad. Sciences USA40, 586–588 (1954)

    Google Scholar 

  11. For an introduction to the theory of Universal Coefficients see Spanier, E.: Algebraic Topology. New York: McGraw Hill, 1966, pp. 222–338

    Google Scholar 

  12. Kodiaira, K.: Complex Manifolds and Deformation of Complex Structures, in particular, Chap. 5, Berlin, Heidelberg, New York: Springer 1986

    Google Scholar 

  13. Baadhio, R. A.: On the Chern-Weil Homomorphism in HomogeneousM 55 with a TrivialU(1) Bundle and 2-form Curvature. CRSR/Newman Lab Report, December 1989

  14. Baadhio R. A.: On the E8, E7 and E6 Topological obstructions structure. CRSR/Newman Lab, March 90

  15. Witten, E.: Physics and Geometry, in Proceedings of the 1986 Congress of Mathematicians. Berkeley, and New issues in Manifold ofSU(N) Holonomy, Nucl. Phys.B268, 79–112 (1986) and references therein

  16. Okonek, C.: Vectors Bundles on Complex Projective Spaces. Birkhauser, 1980; Schneider, M.: Sem. Bourbaki 530, Nov. 1978, no. 18-19-20, page 80

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S.-T. Yau

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baadhio, R.A. Heterotic superstring gauge residue trivialization via homogeneousCP 4 topology change. Commun.Math. Phys. 136, 251–264 (1991). https://doi.org/10.1007/BF02100024

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02100024

Keywords

Navigation