Communications in Mathematical Physics

, Volume 180, Issue 3, pp 757–777 | Cite as

The higher order Hamiltonian structures for the modified classical Yang-Baxter equation

  • Kaoru Ikeda


We consider constructing the higher order Hamiltonian structures on the dual of the Lie algebra from the first Hamiltonian structure of the coadjoint orbit method. For this purpose we show that the structure of the Lie algebrag is inherited to the algebra of vector fields ong* through the solution of the Modified Classical Yang-Baxter equation (Classicalr matrix). We study the algebra that generates the compatible Poisson brackets.


Neural Network Statistical Physic Complex System Vector Field Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adler, M.: On a Trace Functional for Pseudo-Differential Operators and the Symplectic Structure of the KdV Equations. Inv. Math.50, 219–248 (1979)Google Scholar
  2. 2.
    Adler, M., von Moerbeke, P.: A Matrix Integral Solution to Two-DimensionalW p-Gravity. Commun. Math. Phys.147, 25–56 (1992)Google Scholar
  3. 3.
    Adler, M., von Moerbeke, P.: Compatible Poisson Structures and the Virasoro Algebra. Commun. Pure Appl. Math.47, 5–37 (1994)Google Scholar
  4. 4.
    Gel'fand, I.M., Dikki, L.: A Lie Algebra Structure in a Formal Variational Calculation. Funkts. Anal. Prilozen.10, 18–25 (1976)Google Scholar
  5. 5.
    Gel'fand, I.M., Dikki, L.: Fractional Powers of Operators and Hamiltonian Systems. Funkts. Anal. Prilozen.10, 13–29 (1976)Google Scholar
  6. 6.
    Gel'fand, I.M., Dikki, L.: The Resolvent and Hamiltonian Systems, Funkts. Anal. Prilozen.11, 11–27 (1977)Google Scholar
  7. 7.
    Gel'fand, I.M., Dorfman, I.: The Schouten Bracket and Hamiltonian Operators. Funkts. Anal. Prilozen.14, 71–74 (1980)Google Scholar
  8. 8.
    Gel'fand, I.M., Dorfman, I.: Hamiltonian Operators and the Classical Yang-Baxter Equation. Funkts. Anal. Prilozen.16, 1–9 (1982)Google Scholar
  9. 9.
    Gel'fand, I.M., Dorfman, I.: Hamiltonian Operators and Algebraic Structures Related to Them. Funkts. Anal. Prilozen.13, 13–30 (1979)Google Scholar
  10. 10.
    Ikeda, K.: The Poisson Structure on the Coordinate Ring of Discrete Lax Operator and Toda Lattice Equation. Adv. Appl. Math.15, 379–389 (1994)Google Scholar
  11. 11.
    Ikeda, K.: Algebraic Study on the Poisson Structure of Lax Operator of B and C Type and Super Lax Operator. In: Tsuchiya, A., Eguchi, T. and Jimbo, M. (eds.) Proc. of RIMS Research Project 1991 “Infinite Analysis, Part A”, Singapore: World Scientific, 1992, pp. 405–418Google Scholar
  12. 12.
    Lichnérowicz, A.: Variété Symplectique et Dynamique Associée à Une Sous-Variété. C.R. Acad. Sci. ParisA280, 523–527 (1975)Google Scholar
  13. 13.
    Lichnérowicz, A.: Les Variétés de Poisson et Leurs Algèbres de Lie Associées. J. Diff. Geom.12, 253–300 (1977)Google Scholar
  14. 14.
    Reyman, A., Semenov-Tyan-Shansky, M.: Group Theoretical Methods in the Theory of Finite Dimensional Integrable Systems. In: Arnol'd, V. and Novikov, S. (eds.) Encyclopaedia of Mathematical Sciences16, “Dynamical Systems VII”, Berlin, Heidelberg, New York: Springer Verlag, pp. 116–225Google Scholar
  15. 15.
    Semenov-Tian-Shanski, M.: What is Classicalr Matrix? Funkts Anal. Prilozen.17, 17–33 (1983)Google Scholar
  16. 16.
    Watanabe, Y.: Hamiltonian Structure of Sato's Hierarchy of KP Equations and a Coadjoint Orbit of Certain Formal Lie Group. Lett. Math. Phys.7, 99–106 (1983)Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Kaoru Ikeda
    • 1
  1. 1.Otaru University of CommerceHokkaidoJapan

Personalised recommendations