Communications in Mathematical Physics

, Volume 180, Issue 3, pp 633–652 | Cite as

The microlocal spectrum condition and Wick polynomials of free fields on curved spacetimes

  • R. Brunetti
  • K. Fredenhagen
  • M. Köhler


Quantum fields propagating on a curved spacetime are investigated in terms of microlocal analysis. We discuss a condition on the wave front set for the correspondingn-point distributions, called “microlocal spectrum condition” (μSC). On Minkowski space, this condition is satisfied as a consequence of the usual spectrum condition. Based on Radzikowski's determination of the wave front set of the two-point function of a free scalar field, satisfying the Hadamard condition in the Kay and Wald sense, we construct in the second part of this paper all Wick polynomials including the energy-momentum tensor for this field as operator valued distributions on the manifold and prove that they satisfy our “microlocal spectrum condition”.


Manifold Scalar Field Wave Front Quantum Computing Minkowski Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bor62] Borchers, H.J.: On the structure of the algebra of the field operators. Nuovo Cimento24, 214 (1962)Google Scholar
  2. [DB60] DeWitt, B.S., Brehme, R.W.: Radiation damping in a gravitational field. Ann. Phys.9, 220–259 (1960)Google Scholar
  3. [DH72] Duistermaat J.J., Hörmander, L.: Fourier integral operators II. Acta Math.128, 183 (1972)Google Scholar
  4. [Dim80] Dimock, J.: Algebras of local observables on a manifold. Commun. Math. Phys.77, 219–228 (1980)Google Scholar
  5. [Dim82] Dimock, J.: Dirac quantum fields on a manifold. Trans. Am. Math. Soc.269, 133–147 (1982)Google Scholar
  6. [Dim92] Dimock, J.: Quantized electromagnetic field on a manifold. Rev. Math. Phys.4, 223–233 (1992)Google Scholar
  7. [Dui73] Duistermaat, J.J.: Fourier Integral Operators. Courant Institute of Mathematical Sciences, New York University, 1973Google Scholar
  8. [FH87] Fredenhagen, K., Haag, R.: Generally covariant quantum field theory and scaling limit. Commun. Math. Phys.108, 91 (1987)Google Scholar
  9. [Fre92] Fredenhagen, K.: On the general theory of quantized fields. In: K. Schmüdgen, editor, Mathematical Physics X, Berlin: Springer Verlag, 1992, pp. 136–152Google Scholar
  10. [FSW78] Fulling, S.A., Sweeny, M., Wald, R.M.: Singularity structure of the two-point function in quantum field theory in curved spacctime. Commun. Math. Phys.63, 257–264 (1978)Google Scholar
  11. [Ful89] Fulling, S.A.: Aspects of Quantum Field Theory in Curved Space-Time. Cambridge: Cambridge University Press, 1989Google Scholar
  12. [Haa92] Haag, R.: Local quantum physics: Fields, particles, algebras. Berlin: Springer, 1992Google Scholar
  13. [Hep69] Hepp, K.: Théorie de la renormalisation. Number 2 in Lecture Notes in Physics. Berlin, Heidelberg: Springer Verlag, 1969Google Scholar
  14. [HK64] Haag, R., Kastler, D.: An algebraic approach to quantum field theory. J. Math. Phys.5, 848 (1964)Google Scholar
  15. [HNS84] Haag, R., Narnhofer, H., Stein, U.: On quantum field theory in gravitational background. Commun. Math. Phys.94, 219–238 (1984)Google Scholar
  16. [Hör71] Hörmander, L.: Fourier integral operators I. Acta Math.127, 79 (1971)Google Scholar
  17. [Hör83] Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Berlin: Springer, 1983Google Scholar
  18. [Jun95] Junker, W.: Adiabatic vacua and Hadamard states for scalar quantum fields on curved spacetimes. PhD thesis, University of Hamburg, 1995Google Scholar
  19. [Köh95] Köhler, M.: New examples for Wightman fields on a manifold. Class. Quant. Grav.12, 1413–1427 (1995)Google Scholar
  20. [KW91] Kay, B.S., Wald, R.M.: Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on spacetimes with a bifurcate killing horizon. Phys. Rep.207(2) 49–136 (1991)Google Scholar
  21. [Rad92] Radzikowski, M.J.: The Hadamard condition and Kay's conjecture in (axiomatic) quantum field theory on curved space-time. PhD thesis, Princeton University, October 1992Google Scholar
  22. [Sat69] Sato, M.: Hyperfunctions and partial differential equations. In Proc. Int. Conf. on Funct. Anal. and Rel. Topics. Tokyo: Tokyo University Press, 1969, pp. 91–94Google Scholar
  23. [Sat70] Sato, M.: Regularity of hyperfunction solution of partial differential equations. Actes Congr. Int. Matl Nice2, 785–794 (1970)Google Scholar
  24. [Uh162] Uhlmann, A.: Über die Definition der Quantenfelder nach Wightman und Haag. Wiss. Zeitschrift Karl Marx Univ.11, 213 (1962)Google Scholar
  25. [Ver94] Verch, R.: Local definiteness, primarity and quasiequivalence of quasifree Hadamard quantum states in curved spacetime. Commun. Math. Phys.160, 507–536 (1994)Google Scholar
  26. [Wal78] Wald, R.M.: Trace anomaly of a conformally invariant quantum field in curved spacetime. Phys. Rev. D17(6), 1477–1484 (1978)Google Scholar
  27. [Wa194] Wald, R.M.: Quantum field theory in curved spacetime and black hole thermodynamics. Chicago lectures in physics. Chicago, USA: Univ. Chicago Press, 1994Google Scholar
  28. [WG64] Wightman, A.S., Gårding, L.: Fields as operator valued distributions in relativistie quantum theory. Ark. Fys,23(13) 1964Google Scholar
  29. [Wo192] Wollenberg, M.: Scaling limits and type of local algebras over curved spacetime. In: W.B. Arveson et al., editors. Operator algebras and topology. Putman Research notes in Mathematics270, Harlow: Longman, 1992Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • R. Brunetti
    • 1
  • K. Fredenhagen
    • 2
  • M. Köhler
    • 2
  1. 1.Dip. di Scienze FisicheUniversità di Napoli “Federico II”NapoliItaly
  2. 2.IL Institut für Theoretische PhysikUniversität HamburgHamburgGermany

Personalised recommendations