Advertisement

Communications in Mathematical Physics

, Volume 180, Issue 3, pp 605–632 | Cite as

The Wigner semi-circle law in quantum electro dynamics

  • L. Accardi
  • Y. G. Lu
Article

Abstract

In the present paper, the basic ideas of thestochastic limit of quantum theory are applied to quantum electro-dynamics. This naturally leads to the study of a new type of quantum stochastic calculus on aHilbert module. Our main result is that in the weak coupling limit of a system composed of a free particle (electron, atom,...) interacting, via the minimal coupling, with the quantum electromagnetic field, a new type of quantum noise arises, living on a Hilbert module rather than a Hilbert space. Moreover we prove that the vacuum distribution of the limiting field operator is not Gaussian, as usual, but a nonlinear deformation of the Wigner semi-circle law. A third new object arising from the present theory, is the so-calledinteracting Fock space. A kind of Fock space in which then quanta, in then-particle space, are not independent, but interact. The origin of all these new features is that we do not introduce the dipole approximation, but we keep the exponential response term, coupling the electron to the quantum electromagnetic field. This produces a nonlinear interaction among all the modes of the limit master field (quantum noise) whose explicit expression, that we find, can be considered as a nonlinear generalization of theFermi golden rule.

Keywords

Weak Coupling Free Particle Quantum Noise Golden Rule Dipole Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Accardi, L., Alicki, R., Frigerio, A., Lu, Y.G.: An invitation to the weak coupling and low density limits. Quantum Probability and Related Topics, QP VI, 1991, pp. 3–61Google Scholar
  2. 2.
    Accardi, L., Lu, Y.G.: On the weak coupling limit for quantum electrodynamics. Prob. Meth. in Math. Phys., eds. F. Guerra, M.I. Loffredo, C. Marchioro, Singapore: World Scientific, 1992, pp. 16–29Google Scholar
  3. 3.
    Accardi, L., Lu, Y.G.: From the weak coupling limit to a new type of quantum stochastic calculus. Quantum Probability and Related Topics, QP VII, 1992, pp. 1–14Google Scholar
  4. 4.
    Blackadar, B.: K-theory for operator algebras. Berlin-Heidelberg-New York: Springer-Verlag 1986Google Scholar
  5. 5.
    Bozejko, M., Speicher, R.: An example of a generalized Brownian Motion. To appear in Commun. Math. Phys.Google Scholar
  6. 6.
    Bozejko, M., Speicher, R.: An example of a generalized Brownian Motion II. Quantum Probability and Related Topics, QP VII, 1992, pp. 67–78Google Scholar
  7. 7.
    Fagnola, F.: On quantum stochastic integration with respect to “free” noise. Quantum Probability and Related Topics, QP VI, 1991, pp. 285–304Google Scholar
  8. 8.
    Jensen, K.K., Thomsen, K.: Elements of KK-Theory, Boston-Basel-Berlin: Birkhäuser, 1991Google Scholar
  9. 9.
    Kümmerer, B., Speicher, R.: Stochastic Integration on the Cuntz AlgebraO . J. Funct. Anal.103, No 2, 372–408 (1992)Google Scholar
  10. 10.
    Louisell, W.H.: Quantum Statistical Properties of Radiation. New York: John Wiley and Sons, 1973Google Scholar
  11. 11.
    Lu, Y.G.: Quantum stochastic calculus on Hilbert modules. To appear in Math. Zeitsch. 1994Google Scholar
  12. 12.
    Lu, Y.G.: Quantum Poisson processes on Hilbert modules. Volterra Preprint N. 114 (1992), submitted to Ann. I.H.P. Prob. Stat.Google Scholar
  13. 13.
    Lu, Y.G.: Free stochastic calculus on Hilbert modules. Volterra Preprint (1993)Google Scholar
  14. 14.
    Paschke, W.: Inner product modules overB *-algebras. Trans. Am. Math. Soc.182, 443–468 (1973)Google Scholar
  15. 15.
    Rieffel, M.: Induced representation ofC *-algebras. Adv. Math.13, 176–257 (1974)Google Scholar
  16. 16a.
    Speicher, R.: A new example of “independence” and “white noise”. Probab. Th. Rel. Fields84, 141–159 (1990)Google Scholar
  17. 16b.
    Speicher, R.: Survey on the stochastic integration on the full Fock space. QP VI, 1991, pp. 421–436Google Scholar
  18. 17.
    Voiculescu, D.: Free noncommutative random variables, random matrices and theH 1 factors of free groups. Quantum Probability and Related Topics, QP VI, 1991, pp. 473–488.Google Scholar
  19. 18.
    Wigner, E.P.: Random matrices. SIAM Rev.9, 1–23 (1967)Google Scholar
  20. 19.
    Accardi, L., Lu, Y.G., Volovich, I.: The stochastic limit of quantum theory. Monograph in preparation (1996)Google Scholar
  21. 20.
    Accardi, L., Aref'eva, I., Volovich, I.: The master field for half-planar diagrams and free non-commutative random variables. Submitted for publication in Mod. Phys. Lett. A (1995), hep-th/9502092Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • L. Accardi
    • 1
    • 2
  • Y. G. Lu
    • 1
    • 2
  1. 1.Centro V. VolterraUniversità degli Studi di Roma-Tor VergataRomaItaly
  2. 2.Graduate School of PolymathematicsNagoya UniversityJapan

Personalised recommendations